enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Minimum railway curve radius - Wikipedia

    en.wikipedia.org/wiki/Minimum_railway_curve_radius

    The minimum railway curve radius is the shortest allowable design radius for the centerline of railway tracks under a particular set of conditions. It has an important bearing on construction costs and operating costs and, in combination with superelevation (difference in elevation of the two rails) in the case of train tracks , determines the ...

  3. Track geometry - Wikipedia

    en.wikipedia.org/wiki/Track_geometry

    The degree of curvature is inverse of radius. The larger the degree of curvature, the sharper the curve is. Expressing the curve in this way allows surveyors to use estimation and simpler tools in curve measurement. This can be done by using a 62-foot (18.90 m) string line to be a chord to connect the arc at the gauge side of the reference rail.

  4. Ruling gradient - Wikipedia

    en.wikipedia.org/wiki/Ruling_gradient

    To compensate for this, the gradient should be a little less steep the sharper the curve is; the necessary grade reduction is assumed to be given by a simple formula such as 0.04 per cent per "degree of curve", the latter being a measure of curve sharpness used in the United States. On a 10-degree curve (radius 573.7 feet) the grade would thus ...

  5. Track transition curve - Wikipedia

    en.wikipedia.org/wiki/Track_transition_curve

    The actual equation given in Rankine is that of a cubic curve, which is a polynomial curve of degree 3, at the time also known as a cubic parabola. In the UK, only from 1845, when legislation and land costs began to constrain the laying out of rail routes and tighter curves were necessary, were the principles beginning to be applied in practice.

  6. Degree of curvature - Wikipedia

    en.wikipedia.org/wiki/Degree_of_curvature

    Where degree of curvature is based on 100 units of arc length, the conversion between degree of curvature and radius is Dr = 18000/π ≈ 5729.57795, where D is degree and r is radius. Since rail routes have very large radii, they are laid out in chords, as the difference to the arc is inconsequential; this made work easier before electronic ...

  7. Hallade method - Wikipedia

    en.wikipedia.org/wiki/Hallade_method

    If the curve needs to be of a desired constant radius, which will usually be determined by physical obstructions and the degree of cant which is permitted, the versine can be calculated for the desired radius using this approximation. In practice, many track curves are transition curves and so have changing radii.

  8. Cant (road and rail) - Wikipedia

    en.wikipedia.org/wiki/Cant_(road_and_rail)

    Ideally, the track should have sleepers (railroad ties) at a closer spacing and a greater depth of ballast to accommodate the increased forces exerted in the curve. At the ends of a curve, where the rails straighten out, the amount of cant cannot change from zero to its maximum immediately. It must change gradually in a track transition curve ...

  9. Cant deficiency - Wikipedia

    en.wikipedia.org/wiki/Cant_deficiency

    Cant itself refers to the superelevation of the curve, that is, the difference between the elevations of the outside and inside rails. Cant deficiency is present when a rail vehicle's speed on the curve is greater than the speed at which the components of wheel to rail force are normal to the plane of the track.