enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    For two circles, there are generally four distinct lines that are tangent to both – if the two circles are outside each other – but in degenerate cases there may be any number between zero and four bitangent lines; these are addressed below. For two of these, the external tangent lines, the circles fall on the same side of the line; for the ...

  3. Monge's theorem - Wikipedia

    en.wikipedia.org/wiki/Monge's_theorem

    For any two circles in a plane, an external tangent is a line that is tangent to both circles but does not pass between them. There are two such external tangent lines for any two circles. Each such pair has a unique intersection point in the extended Euclidean plane. Monge's theorem states that the three such points given by the three pairs of ...

  4. Tangent circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_circles

    In geometry, tangent circles (also known as kissing circles) are circles in a common plane that intersect in a single point. There are two types of tangency : internal and external. Many problems and constructions in geometry are related to tangent circles; such problems often have real-life applications such as trilateration and maximizing the ...

  5. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Kissing circles. Given three mutually tangent circles (black), there are, in general, two possible answers (red) as to what radius a fourth tangent circle can have.In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation.

  6. Problem of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Problem_of_Apollonius

    In that case, Apollonius' problem degenerates to the CCP limiting case, which is the problem of finding a solution circle tangent to the two remaining given circles that passes through the point P. Inversion in a circle centered on P transforms the two given circles into new circles, and the solution circle into a line. Therefore, the ...

  7. Circle packing theorem - Wikipedia

    en.wikipedia.org/wiki/Circle_packing_theorem

    A stronger form of the circle packing theorem asserts that any polyhedral graph and its dual graph can be represented by two circle packings, such that the two tangent circles representing a primal graph edge and the two tangent circles representing the dual of the same edge always have their tangencies at right angles to each other at the same ...

  8. Inversive geometry - Wikipedia

    en.wikipedia.org/wiki/Inversive_geometry

    If two tangent lines can be drawn from a pole to the circle, then its polar passes through both tangent points. If a point lies on the circle, its polar is the tangent through this point. If a point P lies on its own polar line, then P is on the circle. Each line has exactly one pole.

  9. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    If a tangent from an external point A meets the circle at F and a secant from the external point A meets the circle at C and D respectively, then AF 2 = AC × AD (tangent–secant theorem). The angle between a chord and the tangent at one of its endpoints is equal to one half the angle subtended at the centre of the circle, on the opposite side ...