enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    In Euclidean plane geometry, a tangent line to a circle is a line that touches the circle at exactly one point, never entering the circle's interior. Tangent lines to circles form the subject of several theorems , and play an important role in many geometrical constructions and proofs .

  3. Tangent circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_circles

    Tangent lines to circles; Circle packing theorem, the result that every planar graph may be realized by a system of tangent circles; Hexafoil, the shape formed by a ring of six tangent circles; Feuerbach's theorem on the tangency of the nine-point circle of a triangle with its incircle and excircles; Descartes' theorem; Ford circle; Bankoff circle

  4. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    A tangent, a chord, and a secant to a circle. The intuitive notion that a tangent line "touches" a curve can be made more explicit by considering the sequence of straight lines (secant lines) passing through two points, A and B, those that lie on the function curve. The tangent at A is the limit when point B approximates or tends to A. The ...

  5. Descartes' theorem - Wikipedia

    en.wikipedia.org/wiki/Descartes'_theorem

    Descartes' theorem generalizes to mutually tangent great or small circles in spherical geometry if the curvature of the th circle is defined as = ⁡, the geodesic curvature of the circle relative to the sphere, which equals the cotangent of the oriented intrinsic radius.

  6. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    Secant-, chord-theorem. For the intersecting secants theorem and chord theorem the power of a point plays the role of an invariant: . Intersecting secants theorem: For a point outside a circle and the intersection points , of a secant line with the following statement is true: | | | | = (), hence the product is independent of line .

  7. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    A tangent can be considered a limiting case of a secant whose ends are coincident. If a tangent from an external point A meets the circle at F and a secant from the external point A meets the circle at C and D respectively, then AF 2 = AC × AD (tangent–secant theorem).

  8. Contact (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Contact_(mathematics)

    A circle with 1st-order contact (tangent) A circle with 2nd-order contact (osculating) A circle with 3rd-order contact at a vertex of a curve. For each point S(t) on a smooth plane curve S, there is exactly one osculating circle, whose radius is the reciprocal of κ(t), the curvature of S at t.

  9. Nine-point circle - Wikipedia

    en.wikipedia.org/wiki/Nine-point_circle

    The nine-point circle is tangent to the incircle and excircles. In 1822 Karl Feuerbach discovered that any triangle's nine-point circle is externally tangent to that triangle's three excircles and internally tangent to its incircle; this result is known as Feuerbach's theorem. He proved that: