Search results
Results from the WOW.Com Content Network
The tangent of half an angle is important in spherical trigonometry and was sometimes known in the 17th century as the half tangent or semi-tangent. [2] Leonhard Euler used it to evaluate the integral ∫ d x / ( a + b cos x ) {\textstyle \int dx/(a+b\cos x)} in his 1768 integral calculus textbook , [ 3 ] and Adrien-Marie Legendre described ...
The following is a list of integrals (antiderivative functions) of trigonometric functions.For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions.
3.1 Integrals of hyperbolic tangent, cotangent, secant, ... In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
Integral transform; Leibniz integral rule; Definitions; Antiderivative; Integral Riemann integral; Lebesgue integration; Contour integration; Integral of inverse functions; Integration by; Parts; Discs; Cylindrical shells; Substitution (trigonometric, tangent half-angle, Euler) Euler's formula; Partial fractions (Heaviside's method) Changing ...
Twice the area of the purple triangle is the stereographic projection s = tan 1 / 2 ϕ = tanh 1 / 2 ψ. The blue point has coordinates (cosh ψ, sinh ψ). The red point has coordinates (cos ϕ, sin ϕ). The purple point has coordinates (0, s). The integral of the hyperbolic secant function defines the Gudermannian function:
The sides of this rhombus have length 1. The angle between the horizontal line and the shown diagonal is 1 / 2 (a + b).This is a geometric way to prove the particular tangent half-angle formula that says tan 1 / 2 (a + b) = (sin a + sin b) / (cos a + cos b).
For a complete list of integral formulas, see lists of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration. For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions.