enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Magnetic_moment

    In electromagnetism, the magnetic moment or magnetic dipole moment is the combination of strength and orientation of a magnet or other object or system that exerts a magnetic field. The magnetic dipole moment of an object determines the magnitude of torque the object experiences in a given magnetic field. When the same magnetic field is applied ...

  3. Magnetization - Wikipedia

    en.wikipedia.org/wiki/Magnetization

    Where is the elementary magnetic moment and is the volume element; in other words, the M-field is the distribution of magnetic moments in the region or manifold concerned. This is better illustrated through the following relation: m = ∭ M d V {\displaystyle \mathbf {m} =\iiint \mathbf {M} \,\mathrm {d} V} where m is an ordinary magnetic ...

  4. Curie's law - Wikipedia

    en.wikipedia.org/wiki/Curie's_law

    To simplify the calculation, we are going to work with a 2-state particle: it may either align its magnetic moment with the magnetic field or against it. So the only possible values of magnetic moment are then μ {\displaystyle \mu } and − μ {\displaystyle -\mu } .

  5. Orders of magnitude (magnetic moment) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    The magnetic moment of an object is an intrinsic property and does not change with distance, and thus can be used to measure "how strong" a magnet is. For example, Earth possesses an enormous magnetic moment, however we are very distant from its center and experience only a tiny magnetic flux density (measured in tesla ) on its surface.

  6. Curie–Weiss law - Wikipedia

    en.wikipedia.org/wiki/Curie–Weiss_law

    Here μ 0 is the permeability of free space; M the magnetization (magnetic moment per unit volume), B = μ 0 H is the magnetic field, and C the material-specific Curie constant: = (+), where k B is the Boltzmann constant, N the number of magnetic atoms (or molecules) per unit volume, g the Landé g-factor, μ B the Bohr magneton, J the angular ...

  7. Maxwell–Bloch equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Bloch_equations

    They are analogous to (but not at all equivalent to) the Bloch equations which describe the motion of the nuclear magnetic moment in an electromagnetic field. The equations can be derived either semiclassically or with the field fully quantized when certain approximations are made.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Force between magnets - Wikipedia

    en.wikipedia.org/wiki/Force_between_magnets

    The magnetic moment is a vector: it has both a magnitude and direction. The direction of the magnetic moment points from the south to north pole of a magnet (inside the magnet). For example, the direction of the magnetic moment of a bar magnet, such as the one in a compass is the direction that the north poles points toward.