Search results
Results from the WOW.Com Content Network
The exponential function can be naturally extended to a complex function, which is a function with the complex numbers as domain and codomain, such that its restriction to the reals is the above-defined exponential function, called real exponential function in what follows.
The definition of e x as the exponential function allows defining b x for every positive real numbers b, in terms of exponential and logarithm function. Specifically, the fact that the natural logarithm ln(x) is the inverse of the exponential function e x means that one has = () = for every b > 0.
[45] [46] Newton's method, an iterative method to solve equations approximately, can also be used to calculate the logarithm, because its inverse function, the exponential function, can be computed efficiently. [47] Using look-up tables, CORDIC-like methods can be used to compute logarithms by using only the operations of addition and bit shifts.
Exponential function: raises a fixed number to a variable power. Hyperbolic functions: formally similar to the trigonometric functions. Inverse hyperbolic functions: inverses of the hyperbolic functions, analogous to the inverse circular functions. Logarithms: the inverses of exponential functions; useful to solve equations involving exponentials.
The number e is a mathematical constant approximately equal to 2.71828 that is the base of the natural logarithm and exponential function.It is sometimes called Euler's number, after the Swiss mathematician Leonhard Euler, though this can invite confusion with Euler numbers, or with Euler's constant, a different constant typically denoted .
Logarithmic functions, using both base 10 and base e; Trigonometric functions (some including hyperbolic trigonometry) Exponential functions and roots beyond the square root; Quick access to constants such as π and e; In addition, high-end scientific calculators generally include some or all of the following:
In mathematics, the exponential function can be characterized in many ways. This article presents some common characterizations, discusses why each makes sense, and proves that they are all equivalent. The exponential function occurs naturally in many branches of mathematics. Walter Rudin called it "the most important function in mathematics". [1]
However, tetration and the Ackermann function grow faster. See Big O notation for a comparison of the rate of growth of various functions. The inverse of the double exponential function is the double logarithm log(log(x)). The complex double exponential function is entire, because it is the composition of two entire functions () = = and