enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler tour technique - Wikipedia

    en.wikipedia.org/wiki/Euler_tour_technique

    The Euler tour technique (ETT), named after Leonhard Euler, is a method in graph theory for representing trees. The tree is viewed as a directed graph that contains two directed edges for each edge in the tree. The tree can then be represented as a Eulerian circuit of the directed graph, known as the Euler tour representation (ETR) of the tree

  3. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    Euler's formula can also be proved as follows: if the graph isn't a tree, then remove an edge which completes a cycle. This lowers both e and f by one, leaving v – e + f constant. Repeat until the remaining graph is a tree; trees have v = e + 1 and f = 1, yielding v – e + f = 2, i. e., the Euler characteristic is 2.

  4. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once

  5. BEST theorem - Wikipedia

    en.wikipedia.org/wiki/BEST_theorem

    Here t w (G) is the number of arborescences, which are trees directed towards the root at a fixed vertex w in G. The number t w (G) can be computed as a determinant, by the version of the matrix tree theorem for directed graphs. It is a property of Eulerian graphs that t v (G) = t w (G) for every two vertices v and w in a connected Eulerian ...

  6. Handshaking lemma - Wikipedia

    en.wikipedia.org/wiki/Handshaking_lemma

    Euler stated the fundamental results for this problem in terms of the number of odd vertices in the graph, which the handshaking lemma restricts to be an even number. If this number is zero, an Euler tour exists, and if it is two, an Euler path exists. Otherwise, the problem cannot be solved.

  7. Tree (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Tree_(graph_theory)

    As special cases, the order-zero graph (a forest consisting of zero trees), a single tree, and an edgeless graph, are examples of forests. Since for every tree V − E = 1, we can easily count the number of trees that are within a forest by subtracting the difference between total vertices and total edges. V − E = number of trees in a forest.

  8. Is it possible to retire comfortably on Social Security alone ...

    www.aol.com/possible-retire-comfortably-social...

    When they retired, the Leedys lived in Alexandria, Virginia, an affluent, high-cost Washington, D.C., suburb. “My mother was 92, and we knew we had to have her live with us, as she could not ...

  9. Dynamic connectivity - Wikipedia

    en.wikipedia.org/wiki/Dynamic_connectivity

    A general graph can be represented by its spanning forest - a forest which contains a tree for every connected component of the graph. We call this spanning forest F. F itself can be represented by a forest of Euler tour trees. The Query and Insert operations are implemented using the corresponding operations on the ET trees representing F.