enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sequential minimal optimization - Wikipedia

    en.wikipedia.org/wiki/Sequential_minimal...

    Sequential minimal optimization (SMO) is an algorithm for solving the quadratic programming (QP) problem that arises during the training of support-vector machines (SVM). It was invented by John Platt in 1998 at Microsoft Research. [1]

  3. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    A training example of SVM with kernel given by φ((a, b)) = (a, b, a 2 + b 2) Suppose now that we would like to learn a nonlinear classification rule which corresponds to a linear classification rule for the transformed data points φ ( x i ) . {\displaystyle \varphi (\mathbf {x} _{i}).}

  4. LIBSVM - Wikipedia

    en.wikipedia.org/wiki/LIBSVM

    The SVM learning code from both libraries is often reused in other open source machine learning toolkits, including GATE, KNIME, Orange [3] and scikit-learn. [4] Bindings and ports exist for programming languages such as Java, MATLAB, R, Julia, and Python. It is available in e1071 library in R and scikit-learn in Python.

  5. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    Within mathematical analysis, Regularization perspectives on support-vector machines provide a way of interpreting support-vector machines (SVMs) in the context of other regularization-based machine-learning algorithms. SVM algorithms categorize binary data, with the goal of fitting the training set data in a way that minimizes the average of ...

  6. Kernel method - Wikipedia

    en.wikipedia.org/wiki/Kernel_method

    In machine learning, kernel machines are a class of algorithms for pattern analysis, whose best known member is the support-vector machine (SVM). These methods involve using linear classifiers to solve nonlinear problems. [1]

  7. LightGBM - Wikipedia

    en.wikipedia.org/wiki/LightGBM

    The LightGBM algorithm utilizes two novel techniques called Gradient-Based One-Side Sampling (GOSS) and Exclusive Feature Bundling (EFB) which allow the algorithm to run faster while maintaining a high level of accuracy. [13] LightGBM works on Linux, Windows, and macOS and supports C++, Python, [14] R, and C#. [15]

  8. Hinge loss - Wikipedia

    en.wikipedia.org/wiki/Hinge_loss

    The hinge loss is a convex function, so many of the usual convex optimizers used in machine learning can work with it.It is not differentiable, but has a subgradient with respect to model parameters w of a linear SVM with score function = that is given by

  9. Polynomial kernel - Wikipedia

    en.wikipedia.org/wiki/Polynomial_kernel

    For degree-d polynomials, the polynomial kernel is defined as [2](,) = (+)where x and y are vectors of size n in the input space, i.e. vectors of features computed from training or test samples and c ≥ 0 is a free parameter trading off the influence of higher-order versus lower-order terms in the polynomial.