Search results
Results from the WOW.Com Content Network
Diagram of D'Arsonval/Weston type galvanometer. As the current flows from + terminal of the coil to − terminal, a magnetic field is generated in the coil.This field is counteracted by the permanent magnet and forces the coil to twist, moving the pointer, in relation to the field's strength caused by the flow of current.
The current in the wire can have two possible directions. Fleming's right-hand rule gives which direction the current flows. The right hand is held with the thumb, index finger and middle finger mutually perpendicular to each other (at right angles), as shown in the diagram. [1]
An induction or inductive loop is an electromagnetic communication or detection system which uses a moving magnet or an alternating current to induce an electric current in a nearby wire. Induction loops are used for transmission and reception of communication signals, or for detection of metal objects in metal detectors or vehicle presence ...
An inductive sensor is a device that uses the principle of electromagnetic induction to detect or measure objects. An inductor develops a magnetic field when an electric current flows through it; alternatively, a current will flow through a circuit containing an inductor when the magnetic field through it changes. This effect can be used to ...
A wire wound coil is the secondary winding. The current through the secondary winding is zero at the balanced condition. In the balanced condition, the flux due to the current through the phase wire will be neutralized by the current through the neutral wire, since the current, which flows from the phase will be returned to the neutral.
When specifying wiring sizes in a three-phase system, we only need to know the magnitude of the phase and neutral currents. The neutral current can be determined by adding the three phase currents together as complex numbers and then converting from rectangular to polar co-ordinates.
Four-point measurement of resistance between voltage sense connections 2 and 3. Current is supplied via force connections 1 and 4. In electrical engineering, four-terminal sensing (4T sensing), 4-wire sensing, or 4-point probes method is an electrical impedance measuring technique that uses separate pairs of current-carrying and voltage-sensing electrodes to make more accurate measurements ...
The device may have the form of a screwdriver. The tip of the tester is touched to the conductor being tested (for instance, it can be used on a wire in a switch, or inserted into a hole of an electric socket). A neon lamp takes very little current to light, and thus can use the user's body capacitance to earth ground to complete the circuit.