Search results
Results from the WOW.Com Content Network
In the case of two nested square roots, the following theorem completely solves the problem of denesting. [2]If a and c are rational numbers and c is not the square of a rational number, there are two rational numbers x and y such that + = if and only if is the square of a rational number d.
An unresolved root, especially one using the radical symbol, is sometimes referred to as a surd [2] or a radical. [3] Any expression containing a radical, whether it is a square root, a cube root, or a higher root, is called a radical expression, and if it contains no transcendental functions or transcendental numbers it is called an algebraic ...
A solution in radicals or algebraic solution is an expression of a solution of a polynomial equation that is algebraic, that is, relies only on addition, subtraction, multiplication, division, raising to integer powers, and extraction of n th roots (square roots, cube roots, etc.). A well-known example is the quadratic formula
The plus–minus sign, ±, is used as a shorthand notation for two expressions written as one, representing one expression with a plus sign, the other with a minus sign. For example, y = x ± 1 represents the two equations y = x + 1 and y = x − 1. Sometimes, it is used for denoting a positive-or-negative term such as ±x.
In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...
Solving an equation symbolically means that expressions can be used for representing the solutions. For example, the equation x + y = 2x – 1 is solved for the unknown x by the expression x = y + 1, because substituting y + 1 for x in the equation results in (y + 1) + y = 2(y + 1) – 1, a true statement.
Algebraic expression notation: 1 – power (exponent) 2 – coefficient 3 – term 4 – operator 5 – constant term – constant – variables. A coefficient is a numerical value, or letter representing a numerical constant, that multiplies a variable (the operator is omitted).
The tangent lines of x 3 − 2x + 2 at 0 and 1 intersect the x-axis at 1 and 0 respectively, illustrating why Newton's method oscillates between these values for some starting points. It is easy to find situations for which Newton's method oscillates endlessly between two distinct values.