enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    The shear stress at a point within a shaft is: = Note that the highest shear stress occurs on the surface of the shaft, where the radius is maximum. High stresses at the surface may be compounded by stress concentrations such as rough spots. Thus, shafts for use in high torsion are polished to a fine surface finish to reduce the maximum stress ...

  3. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.

  4. Torsion constant - Wikipedia

    en.wikipedia.org/wiki/Torsion_constant

    The torsion constant or torsion coefficient is a geometrical property of a bar's cross-section. It is involved in the relationship between angle of twist and applied torque along the axis of the bar, for a homogeneous linear elastic bar. The torsion constant, together with material properties and length, describes a bar's torsional stiffness.

  5. Roark's Formulas for Stress and Strain - Wikipedia

    en.wikipedia.org/wiki/Roark's_Formulas_for_Stress...

    • The behavior of bodies under stress • Analytical, numerical, and experimental methods • Tension, compression, shear, and combined stress • Beams and curved beams • Torsion, flat plates, and columns • Shells of revolution, pressure vessels, and pipes • Bodies under direct pressure and shear stress • Elastic stability

  6. Membrane analogy - Wikipedia

    en.wikipedia.org/wiki/Membrane_analogy

    Using the membrane analogy, any thin-walled cross section can be "stretched out" into a rectangle without affecting the stress distribution under torsion. The maximum shear stress, therefore, occurs at the edge of the midpoint of the stretched cross section, and is equal to /, where T is the torque applied, b is the length of the stretched ...

  7. Hydraulic diameter - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_diameter

    For a fully filled duct or pipe whose cross-section is a convex regular polygon, the hydraulic diameter is equivalent to the diameter of a circle inscribed within the wetted perimeter. This can be seen as follows: The N {\displaystyle N} -sided regular polygon is a union of N {\displaystyle N} triangles, each of height D / 2 {\displaystyle D/2 ...

  8. Shear strength - Wikipedia

    en.wikipedia.org/wiki/Shear_strength

    This is only the average stress, actual stress distribution is not uniform. In real world applications, this equation only gives an approximation and the maximum shear stress would be higher. Stress is not often equally distributed across a part so the shear strength would need to be higher to account for the estimate. [2]

  9. Fanning friction factor - Wikipedia

    en.wikipedia.org/wiki/Fanning_friction_factor

    It is defined as the ratio between the local shear stress and the local flow kinetic energy density: [1] [2] = where f is the local Fanning friction factor (dimensionless); τ is the local shear stress (units of pascals (Pa) = kg/m 2, or pounds per square foot (psf) = lbm/ft 2);