Search results
Results from the WOW.Com Content Network
In computing, a normal number is a non-zero number in a floating-point representation which is within the balanced range supported by a given floating-point format: it is a floating point number that can be represented without leading zeros in its significand. The magnitude of the smallest normal number in a format is given by:
The decimal number 0.15625 10 represented in binary is 0.00101 2 (that is, 1/8 + 1/32). (Subscripts indicate the number base.) Analogous to scientific notation, where numbers are written to have a single non-zero digit to the left of the decimal point, we rewrite this number so it has a single 1 bit to the left of the "binary point". We simply ...
This means that numbers that appear to be short and exact when written in decimal format may need to be approximated when converted to binary floating-point. For example, the decimal number 0.1 is not representable in binary floating-point of any finite precision; the exact binary representation would have a "1100" sequence continuing endlessly:
The standard defines five basic formats that are named for their numeric base and the number of bits used in their interchange encoding. There are three binary floating-point basic formats (encoded with 32, 64 or 128 bits) and two decimal floating-point basic formats (encoded with 64 or 128 bits).
The significand (or mantissa) of an IEEE floating-point number is the part of a floating-point number that represents the significant digits. For a positive normalised number it can be represented as m 0.m 1 m 2 m 3...m p−2 m p−1 (where m represents a significant digit, and p is the precision) with non-zero m 0. Notice that for a binary ...
IEEE 754-2008 also had many other updates to the IEEE floating-point standardisation. IEEE 854 arithmetic was first commercially implemented in the HP-71B handheld computer, which used decimal floating point with 12 digits of significand, and an exponent range of ±499, with a 15 digit significand used for intermediate results.
In many computer systems, binary floating-point numbers are represented internally using this normalized form for their representations; for details, see normal number (computing). Although the point is described as floating , for a normalized floating-point number, its position is fixed, the movement being reflected in the different values of ...
To approximate the greater range and precision of real numbers, we have to abandon signed integers and fixed-point numbers and go to a "floating-point" format. In the decimal system, we are familiar with floating-point numbers of the form (scientific notation): 1.1030402 × 10 5 = 1.1030402 × 100000 = 110304.02. or, more compactly: 1.1030402E5