Search results
Results from the WOW.Com Content Network
The grid method (also known as the box method) of multiplication is an introductory approach to multi-digit multiplication calculations that involve numbers larger than ten. Because it is often taught in mathematics education at the level of primary school or elementary school , this algorithm is sometimes called the grammar school method.
The grid method (or box method) is an introductory method for multiple-digit multiplication that is often taught to pupils at primary school or elementary school. It has been a standard part of the national primary school mathematics curriculum in England and Wales since the late 1990s. [3]
Starting from the rightmost digit, double each digit and add the neighbor. (The "neighbor" is the digit on the right.) If the answer is greater than a single digit, simply carry over the extra digit (which will be a 1 or 2) to the next operation. The remaining digit is one digit of the final result. Example:
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
The combination of these two symbols is sometimes known as a long division symbol or division bracket. [8] It developed in the 18th century from an earlier single-line notation separating the dividend from the quotient by a left parenthesis. [9] [10] The process is begun by dividing the left-most digit of the dividend by the divisor.
More systematically and more efficiently, two integers can be divided with pencil and paper with the method of short division, if the divisor is small, or long division, if the divisor is larger. If the dividend has a fractional part (expressed as a decimal fraction ), one can continue the procedure past the ones place as far as desired.
The following exposition assumes that the numbers are broken into two-digit pieces, separated by commas: e.g. 3456 becomes 34,56. In general x,y denotes x⋅100 + y and x,y,z denotes x⋅10000 + y⋅100 + z, etc. Suppose that we wish to divide c by a, to obtain the result b. (So a × b = c.)
Now multiply each digit of the divisor by the new digit of the quotient and subtract the result from the left-hand segment of the dividend. Where the subtrahend and the dividend segment differ, cross out the dividend digit and write if necessary the difference (remainder) in the next vertical empty space. Cross out the divisor digit used.