enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rotation operator (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_operator_(quantum...

    Classically we have for the angular momentum =. This is the same in quantum mechanics considering and as operators. Classically, an infinitesimal rotation of the vector = (,,) about the -axis to ′ = (′, ′,) leaving unchanged can be expressed by the following infinitesimal translations (using Taylor approximation):

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...

  4. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...

  5. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    This is Rodrigues' formula for the axis of a composite rotation defined in terms of the axes of the two component rotations. He derived this formula in 1840 (see page 408). [3] The three rotation axes A, B, and C form a spherical triangle and the dihedral angles between the planes formed by the sides of this triangle are defined by the rotation ...

  6. Symmetry in quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Symmetry_in_quantum_mechanics

    Symmetries in quantum mechanics describe features of spacetime and particles which are unchanged under some transformation, in the context of quantum mechanics, relativistic quantum mechanics and quantum field theory, and with applications in the mathematical formulation of the standard model and condensed matter physics. In general, symmetry ...

  7. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations , which have no fixed points, and (hyperplane) reflections , each of them having an entire ( n − 1) -dimensional flat of ...

  8. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    A rotation can be represented by a unit-length quaternion q = (w, r →) with scalar (real) part w and vector (imaginary) part r →. The rotation can be applied to a 3D vector v → via the formula = + (+). This requires only 15 multiplications and 15 additions to evaluate (or 18 multiplications and 12 additions if the factor of 2 is done via ...

  9. Rotational symmetry - Wikipedia

    en.wikipedia.org/wiki/Rotational_symmetry

    Rotational symmetry of order n, also called n-fold rotational symmetry, or discrete rotational symmetry of the n th order, with respect to a particular point (in 2D) or axis (in 3D) means that rotation by an angle of ⁠ ⁠ (180°, 120°, 90°, 72°, 60°, 51 3 ⁄ 7 °, etc.) does not change the object. A "1-fold" symmetry is no symmetry (all ...