Search results
Results from the WOW.Com Content Network
In 1946, Arthur Burks used the terms mantissa and characteristic to describe the two parts of a floating-point number (Burks [11] et al.) by analogy with the then-prevalent common logarithm tables: the characteristic is the integer part of the logarithm (i.e. the exponent), and the mantissa is the fractional part.
The way in which the significand (including its sign) and exponent are stored in a computer is implementation-dependent. The common IEEE formats are described in detail later and elsewhere, but as an example, in the binary single-precision (32-bit) floating-point representation, p = 24 {\displaystyle p=24} , and so the significand is a string ...
Several earlier 16-bit floating point formats have existed including that of Hitachi's HD61810 DSP of 1982 (a 4-bit exponent and a 12-bit mantissa), [2] Thomas J. Scott's WIF of 1991 (5 exponent bits, 10 mantissa bits) [3] and the 3dfx Voodoo Graphics processor of 1995 (same as Hitachi).
A 2-bit float with 1-bit exponent and 1-bit mantissa would only have 0, 1, Inf, NaN values. If the mantissa is allowed to be 0-bit, a 1-bit float format would have a 1-bit exponent, and the only two values would be 0 and Inf. The exponent must be at least 1 bit or else it no longer makes sense as a float (it would just be a signed number).
The sign bit determines the sign of the number, which is the sign of the significand as well. The exponent field is an 8-bit unsigned integer from 0 to 255, in biased form: a value of 127 represents the actual exponent zero.
Now we can read off the fraction and the exponent: the fraction is .01 2 and the exponent is −3. As illustrated in the pictures, the three fields in the IEEE 754 representation of this number are: sign = 0, because the number is positive. (1 indicates negative.) biased exponent = −3 + the "bias".
Biased representations are now primarily used for the exponent of floating-point numbers. The IEEE 754 floating-point standard defines the exponent field of a single-precision (32-bit) number as an 8-bit excess-127 field. The double-precision (64-bit) exponent field is an 11-bit excess-1023 field; see exponent bias.
The floating point values are represented using three separate values, mantissa, exponent, and sign. Given this separate sign bit, it is possible to represent both positive and negative zero. Most programming languages normally treat positive zero and negative zero as equivalent values, albeit, they provide means by which the distinction can be ...