Search results
Results from the WOW.Com Content Network
A structural load or structural action is a mechanical load (more generally a force) applied to structural elements. [1] [2] A load causes stress, deformation, displacement or acceleration in a structure. Structural analysis, a discipline in engineering, analyzes the effects of loads on structures and structural elements.
Structural analysis is a branch of solid mechanics which uses simplified models for solids like bars, beams and shells for engineering decision making. Its main objective is to determine the effect of loads on physical structures and their components.
Structural engineering depends upon a detailed knowledge of loads, physics and materials to understand and predict how structures support and resist self-weight and imposed loads. To apply the knowledge successfully structural engineers will need a detailed knowledge of mathematics and of relevant empirical and theoretical design codes.
Structural engineering theory is based upon applied physical laws and empirical knowledge of the structural performance of different materials and geometries. Structural engineering design uses a number of relatively simple structural concepts to build complex structural systems. Structural engineers are responsible for making creative and ...
Load path analysis is a technique of mechanical and structural engineering used to determine the path of maximum stress in a non-uniform load-bearing member in response to an applied load. Load path analysis can be used to minimize the material needed in the load-bearing member to support the design load.
The conjugate beam is "loaded" with the M/EI diagram derived from the load on the real beam. From the above comparisons, we can state two theorems related to the conjugate beam: [ 2 ] Theorem 1: The slope at a point in the real beam is numerically equal to the shear at the corresponding point in the conjugate beam.
The Southwell plot is a graphical method of determining experimentally a structure's critical load, without needing to subject the structure to near-critical loads. [1] The technique can be used for nondestructive testing of any structural elements that may fail by buckling. [2]
Structural dynamics is a type of structural analysis which covers the behavior of a structure subjected to dynamic (actions having high acceleration) loading. Dynamic loads include people, wind, waves, traffic, earthquakes, and blasts. Any structure can be subjected to dynamic loading.