Search results
Results from the WOW.Com Content Network
Increasing temperature results in a decrease in viscosity because a larger temperature means particles have greater thermal energy and are more easily able to overcome the attractive forces binding them together. An everyday example of this viscosity decrease is cooking oil moving more fluidly in a hot frying pan than in a cold one.
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
The viscosity index (VI) is an arbitrary, unit-less measure of a fluid's change in viscosity relative to temperature change. It is mostly used to characterize the viscosity-temperature behavior of lubricating oils .
Under standard atmospheric conditions (25 °C and pressure of 1 bar), the dynamic viscosity of air is 18.5 μPa·s, roughly 50 times smaller than the viscosity of water at the same temperature. Except at very high pressure, the viscosity of air depends mostly on the temperature.
Viscosity [1] 4.5646 mPa·s at 0°C 2.3703 mPa·s at 20°C 1.3311 mPa·s at 40°C ... Except where noted otherwise, data relate to Standard temperature and pressure.
Note: ρ is density, n is refractive index at 589 nm, [clarification needed] and η is viscosity, all at 20 °C; T eq is the equilibrium temperature between two phases: ice/liquid solution for T eq < 0–0.1 °C and NaCl/liquid solution for T eq above 0.1 °C.
The gas viscosity model of Chung et alios (1988) [5] is combination of the Chapman–Enskog(1964) kinetic theory of viscosity for dilute gases and the empirical expression of Neufeld et alios (1972) [6] for the reduced collision integral, but expanded empirical to handle polyatomic, polar and hydrogen bonding fluids over a wide temperature ...
Viscosity [1] 0.4013 mPa·s at 0 °C ... Except where noted otherwise, data relate to Standard temperature and pressure. Reliability of data general note.