Search results
Results from the WOW.Com Content Network
A variant of Gaussian elimination called Gauss–Jordan elimination can be used for finding the inverse of a matrix, if it exists. If A is an n × n square matrix, then one can use row reduction to compute its inverse matrix, if it exists. First, the n × n identity matrix is augmented to the right of A, forming an n × 2n block matrix [A | I].
In this example, the Gauss–Newton algorithm will be used to fit a model to some data by minimizing the sum of squares of errors between the data and model's predictions. In a biology experiment studying the relation between substrate concentration [S] and reaction rate in an enzyme-mediated reaction, the data in the following table were obtained.
In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel .
In numerical linear algebra, the method of successive over-relaxation (SOR) is a variant of the Gauss–Seidel method for solving a linear system of equations, resulting in faster convergence. A similar method can be used for any slowly converging iterative process .
In numerical analysis Gauss–Laguerre quadrature (named after Carl Friedrich Gauss and Edmond Laguerre) is an extension of the Gaussian quadrature method for approximating the value of integrals of the following kind: + (). In this case
The generalized Gauss–Newton method is a generalization of the least-squares method originally described by Carl Friedrich Gauss and of Newton's method due to Isaac Newton to the case of constrained nonlinear least-squares problems.
The Gaussian quadrature chooses more suitable points instead, so even a linear function approximates the function better (the black dashed line). As the integrand is the polynomial of degree 3 (y(x) = 7x 3 – 8x 2 – 3x + 3), the 2-point Gaussian quadrature rule even returns an exact result.
For example, implicit linear multistep methods include Adams-Moulton methods, and backward differentiation methods (BDF), whereas implicit Runge–Kutta methods [6] include diagonally implicit Runge–Kutta (DIRK), [7] [8] singly diagonally implicit Runge–Kutta (SDIRK), [9] and Gauss–Radau [10] (based on Gaussian quadrature [11]) numerical ...