Search results
Results from the WOW.Com Content Network
Examples include the class of all groups, the class of all vector spaces, and many others. In category theory, a category whose collection of objects forms a proper class (or whose collection of morphisms forms a proper class) is called a large category. The surreal numbers are a proper class of objects that have the properties of a field.
A class of groups is a set-theoretical collection of groups satisfying the property that if G is in the collection then every group isomorphic to G is also in the collection. This concept arose from the necessity to work with a bunch of groups satisfying certain special property (for example finiteness or commutativity ).
The proof of the Brunn–Minkowski inequality predates modern measure theory; the development of measure theory and Lebesgue integration allowed connections to be made between geometry and analysis, to the extent that in an integral form of the Brunn–Minkowski inequality known as the Prékopa–Leindler inequality the geometry seems almost ...
Set theory, however, was founded by a single paper in 1874 by Georg Cantor: "On a Property of the Collection of All Real Algebraic Numbers". [ 1 ] [ 2 ] Since the 5th century BC, beginning with Greek mathematician Zeno of Elea in the West and early Indian mathematicians in the East, mathematicians had struggled with the concept of infinity .
However, glossaries like this one are useful for looking up, comparing and reviewing large numbers of terms together. You can help enhance this page by adding new terms or writing definitions for existing ones. This glossary of calculus is a list of definitions about calculus, its sub-disciplines, and related fields.
In the former case, equivalence of two definitions means that a mathematical object (for example, geometric body) satisfies one definition if and only if it satisfies the other definition. In the latter case, the meaning of equivalence (between two definitions of a structure) is more complicated, since a structure is more abstract than an object.
The apparent plural form in English goes back to the Latin neuter plural mathematica , based on the Greek plural ta mathēmatiká (τὰ μαθηματικά) and means roughly "all things mathematical", although it is plausible that English borrowed only the adjective mathematic(al) and formed the noun mathematics anew, after the pattern of ...
The process of unification might be seen as helping to define what constitutes mathematics as a discipline. For example, mechanics and mathematical analysis were commonly combined into one subject during the 18th century, united by the differential equation concept; while algebra and geometry were considered largely distinct.