enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. John M. Lee - Wikipedia

    en.wikipedia.org/wiki/John_M._Lee

    Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). New York London: Springer-Verlag. ISBN 978-1-4419-9981-8. OCLC 808682771. Introduction to Smooth Manifolds, Springer-Verlag, Graduate Texts in Mathematics, 2002, 2nd edition 2012 [6] Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds.

  3. Template:Lee Introduction to Smooth Manifolds - Wikipedia

    en.wikipedia.org/wiki/Template:Lee_Introduction...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  4. Flow distribution in manifolds - Wikipedia

    en.wikipedia.org/wiki/Flow_distribution_in_manifolds

    The flow in manifolds is extensively encountered in many industrial processes when it is necessary to distribute a large fluid stream into several parallel streams and then to collect them into one discharge stream, such as fuel cells, plate heat exchanger, radial flow reactor, and irrigation. Manifolds can usually be categorized into one of ...

  5. Congruence (manifolds) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(manifolds)

    Introduction to smooth manifolds. New York: Springer. ISBN 0-387-95448-1. A textbook on manifold theory. See also the same author's textbooks on topological manifolds (a lower level of structure) and Riemannian geometry (a higher level of structure).

  6. Manifold (fluid mechanics) - Wikipedia

    en.wikipedia.org/wiki/Manifold_(fluid_mechanics)

    Types of manifolds in engineering include: Exhaust manifold An engine part that collects the exhaust gases from multiple cylinders into one pipe. Also known as headers. Hydraulic manifold A component used to regulate fluid flow in a hydraulic system, thus controlling the transfer of power between actuators and pumps Inlet manifold (or "intake ...

  7. Musical isomorphism - Wikipedia

    en.wikipedia.org/wiki/Musical_isomorphism

    The musical isomorphisms are the global version of this isomorphism and its inverse for the tangent bundle and cotangent bundle of a (pseudo-)Riemannian manifold (,). They are canonical isomorphisms of vector bundles which are at any point p the above isomorphism applied to the tangent space of M at p endowed with the inner product g p ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Whitney embedding theorem - Wikipedia

    en.wikipedia.org/wiki/Whitney_embedding_theorem

    The occasion of the proof by Hassler Whitney of the embedding theorem for smooth manifolds is said (rather surprisingly) to have been the first complete exposition of the manifold concept precisely because it brought together and unified the differing concepts of manifolds at the time: no longer was there any confusion as to whether abstract ...