Search results
Results from the WOW.Com Content Network
12: It is divisible by 3 and by 4. [6] 324: it is divisible by 3 and by 4. Subtract the last digit from twice the rest. The result must be divisible by 12. 324: 32 × 2 − 4 = 60 = 5 × 12. 13: Form the alternating sum of blocks of three from right to left. The result must be divisible by 13. [7] 2,911,272: 272 − 911 + 2 = −637.
d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n
12 (twelve) is the natural number following 11 and preceding 13.. Twelve is the 3rd superior highly composite number, [1] the 3rd colossally abundant number, [2] the 5th highly composite number, and is divisible by the numbers from 1 to 4, and 6, a large number of divisors comparatively.
The smallest abundant number not divisible by 2 or by 3 is 5391411025 whose distinct prime factors are 5, 7, 11, 13, 17, 19, 23, and 29 (sequence A047802 in the OEIS). An algorithm given by Iannucci in 2005 shows how to find the smallest abundant number not divisible by the first k primes. [1]
1 and −1 divide (are divisors of) every integer. Every integer (and its negation) is a divisor of itself. Integers divisible by 2 are called even, and integers not divisible by 2 are called odd. 1, −1, and are known as the trivial divisors of .
Year 100 was a leap year starting on Wednesday of the Julian calendar. The denomination 100 for this year has been used since the early medieval period.
D0 20 is equivalent to two hundred and sixty in decimal = (13 × 20 1) + (0 × 20 0) 100 20 is equivalent to four hundred in decimal = (1 × 20 2) + (0 × 20 1) + (0 × 20 0). In the rest of this article below, numbers are expressed in decimal notation, unless specified otherwise. For example, 10 means ten, 20 means twenty. Numbers in vigesimal ...
By assuming the Elliott–Halberstam conjecture or a slightly weaker version, they were able to show that there are infinitely many n such that at least two of n, n + 2, n + 6, n + 8, n + 12, n + 18, or n + 20 are prime. Under a stronger hypothesis they showed that for infinitely many n, at least two of n, n + 2, n + 4, and n + 6 are prime.