enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Deterministic finite automaton - Wikipedia

    en.wikipedia.org/wiki/Deterministic_finite_automaton

    In the theory of computation, a branch of theoretical computer science, a deterministic finite automaton (DFA)—also known as deterministic finite acceptor (DFA), deterministic finite-state machine (DFSM), or deterministic finite-state automaton (DFSA)—is a finite-state machine that accepts or rejects a given string of symbols, by running ...

  3. Chainer - Wikipedia

    en.wikipedia.org/wiki/Chainer

    Chainer was the first deep learning framework to introduce the define-by-run approach. [ 10 ] [ 11 ] The traditional procedure to train a network was in two phases: define the fixed connections between mathematical operations (such as matrix multiplication and nonlinear activations) in the network, and then run the actual training calculation.

  4. Learnable function class - Wikipedia

    en.wikipedia.org/wiki/Learnable_function_class

    Specifically, function classes that ensure the existence of a sequence {^} that satisfies are known as learnable classes. [ 1 ] It is worth noting that at least for supervised classification and regression problems, if a function class is learnable, then the empirical risk minimization automatically satisfies ( 1 ). [ 2 ]

  5. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  6. Automatic basis function construction - Wikipedia

    en.wikipedia.org/wiki/Automatic_basis_function...

    In machine learning, automatic basis function construction (or basis discovery) is the mathematical method of looking for a set of task-independent basis functions that map the state space to a lower-dimensional embedding, while still representing the value function accurately.

  7. Feature engineering - Wikipedia

    en.wikipedia.org/wiki/Feature_engineering

    Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...

  8. Differentiable programming - Wikipedia

    en.wikipedia.org/wiki/Differentiable_programming

    Differentiable programming has found use in a wide variety of areas, particularly scientific computing and machine learning. [5] One of the early proposals to adopt such a framework in a systematic fashion to improve upon learning algorithms was made by the Advanced Concepts Team at the European Space Agency in early 2016. [6]

  9. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  1. Related searches dca and dfs functions in machine learning python projects with pictures

    dfa finite automatonminimal dfas algorithm