enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Overfitting - Wikipedia

    en.wikipedia.org/wiki/Overfitting

    In statistics, an inference is drawn from a statistical model, which has been selected via some procedure. Burnham & Anderson, in their much-cited text on model selection, argue that to avoid overfitting, we should adhere to the "Principle of Parsimony". [3] The authors also state the following. [3]: 32–33

  3. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    Data augmentation in data analysis are techniques used to increase the amount of data by adding slightly modified copies of already existing data or newly created synthetic data from existing data. It acts as a regularizer and helps reduce overfitting when training a machine learning model. [8] (See: Data augmentation)

  4. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    In statistics, the reduced chi-square statistic is used extensively in goodness of fit testing. It is also known as mean squared weighted deviation ( MSWD ) in isotopic dating [ 1 ] and variance of unit weight in the context of weighted least squares .

  5. Regularization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Regularization_(mathematics)

    In machine learning, a key challenge is enabling models to accurately predict outcomes on unseen data, not just on familiar training data.Regularization is crucial for addressing overfitting—where a model memorizes training data details but can't generalize to new data.

  6. Data augmentation - Wikipedia

    en.wikipedia.org/wiki/Data_augmentation

    Data augmentation is a statistical technique which allows maximum likelihood estimation from incomplete data. [1] [2] Data augmentation has important applications in Bayesian analysis, [3] and the technique is widely used in machine learning to reduce overfitting when training machine learning models, [4] achieved by training models on several slightly-modified copies of existing data.

  7. Statistical model specification - Wikipedia

    en.wikipedia.org/wiki/Statistical_model...

    A variable omitted from the model may have a relationship with both the dependent variable and one or more of the independent variables (causing omitted-variable bias). [3] An irrelevant variable may be included in the model (although this does not create bias, it involves overfitting and so can lead to poor predictive performance).

  8. Bias–variance tradeoff - Wikipedia

    en.wikipedia.org/wiki/Bias–variance_tradeoff

    In statistics and machine learning, the bias–variance tradeoff describes the relationship between a model's complexity, the accuracy of its predictions, and how well it can make predictions on previously unseen data that were not used to train the model. In general, as we increase the number of tunable parameters in a model, it becomes more ...

  9. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    Pruning reduces the complexity of the final classifier, and hence improves predictive accuracy by the reduction of overfitting. One of the questions that arises in a decision tree algorithm is the optimal size of the final tree. A tree that is too large risks overfitting the training data and poorly generalizing to new samples. A small tree ...