enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Series and parallel springs - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_springs

    The following table gives formula for the spring that is equivalent to a system of two springs, in series or in parallel, whose spring constants are and . [1] The compliance c {\displaystyle c} of a spring is the reciprocal 1 / k {\displaystyle 1/k} of its spring constant.)

  3. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  4. Effective mass (spring–mass system) - Wikipedia

    en.wikipedia.org/wiki/Effective_mass_(spring...

    In a real spring–mass system, the spring has a non-negligible mass.Since not all of the spring's length moves at the same velocity as the suspended mass (for example the point completely opposed to the mass , at the other end of the spring, is not moving at all), its kinetic energy is not equal to .

  5. Spring (device) - Wikipedia

    en.wikipedia.org/wiki/Spring_(device)

    Simplified LaCoste suspension using a zero-length spring Spring length L vs force F graph of ordinary (+), zero-length (0) and negative-length (−) springs with the same minimum length L 0 and spring constant. Zero-length spring is a term for a specially designed coil spring that would exert zero force if it had zero length. That is, in a line ...

  6. Restoring force - Wikipedia

    en.wikipedia.org/wiki/Restoring_force

    Pulling the spring to a greater length causes it to exert a force that brings the spring back toward its equilibrium length. The amount of force can be determined by multiplying the spring constant, characteristic of the spring, by the amount of stretch, also known as Hooke's Law. Another example is of a pendulum.

  7. Elastic energy - Wikipedia

    en.wikipedia.org/wiki/Elastic_energy

    While some of the energy transferred can end up stored as the kinetic energy of acquired velocity, the deformation of component objects results in stored elastic energy. A prototypical elastic component is a coiled spring. The linear elastic performance of a spring is parametrized by a constant of proportionality, called the spring constant.

  8. Spring scale - Wikipedia

    en.wikipedia.org/wiki/Spring_scale

    A spring scale, spring balance or newton meter is a type of mechanical force gauge or weighing scale. It consists of a spring fixed at one end with a hook to attach an object at the other. [ 1 ] It works in accordance with Hooke's Law , which states that the force needed to extend or compress a spring by some distance scales linearly with ...

  9. Rubber elasticity - Wikipedia

    en.wikipedia.org/wiki/Rubber_elasticity

    Since the deformation does not involve enthalpy change, the change in free energy can simply be calculated as the change in entropy. Note that the force equation resembles the behaviour of a spring and follows Hooke's law: =, where F is the force, k is the spring constant and x is