Search results
Results from the WOW.Com Content Network
A basic example is in the argv argument to the main function in C (and C++), which is given in the prototype as char **argv—this is because the variable argv itself is a pointer to an array of strings (an array of arrays), so *argv is a pointer to the 0th string (by convention the name of the program), and **argv is the 0th character of the ...
On many common platforms, this use of pointer punning can create problems if different pointers are aligned in machine-specific ways. Furthermore, pointers of different sizes can alias accesses to the same memory, causing problems that are unchecked by the compiler. Even when data size and pointer representation match, however, compilers can ...
When an object is created, a pointer to this table, called the virtual table pointer, vpointer or VPTR, is added as a hidden member of this object. As such, the compiler must also generate "hidden" code in the constructors of each class to initialize a new object's virtual table pointer to the address of its class's virtual method table.
Although function pointers in C and C++ can be implemented as simple addresses, so that typically sizeof(Fx)==sizeof(void *), member pointers in C++ are sometimes implemented as "fat pointers", typically two or three times the size of a simple function pointer, in order to deal with virtual methods and virtual inheritance [citation needed].
C++ destructors for local variables are called at the end of the object lifetime, allowing a discipline for automatic resource management termed RAII, which is widely used in C++. Member variables are created when the parent object is created. Array members are initialized from 0 to the last member of the array in order.
An allocator, A, for objects of type T must have a member function with the signature A:: pointer A:: allocate (size_type n, A < void >:: const_pointer hint = 0). This function returns a pointer to the first element of a newly allocated array large enough to contain n objects of type T; only the
In the C++ programming language, auto_ptr is an obsolete smart pointer class template that was available in previous versions of the C++ standard library (declared in the <memory> header file), which provides some basic RAII features for C++ raw pointers. It has been replaced by the unique_ptr class.
C++11 also introduces std::make_shared (std::make_unique was introduced in C++14) to safely allocate dynamic memory in the RAII paradigm. [10] A shared_ptr is a container for a raw pointer. It maintains reference counting ownership of its contained pointer in cooperation with all copies of the shared_ptr.