enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Unsupervised learning - Wikipedia

    en.wikipedia.org/wiki/Unsupervised_learning

    Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision , where a small portion of the data is tagged, and self-supervision .

  3. Competitive learning - Wikipedia

    en.wikipedia.org/wiki/Competitive_learning

    Competitive learning is a form of unsupervised learning in artificial neural networks, in which nodes compete for the right to respond to a subset of the input data. [ 1 ] [ 2 ] A variant of Hebbian learning , competitive learning works by increasing the specialization of each node in the network.

  4. Generalized Hebbian algorithm - Wikipedia

    en.wikipedia.org/wiki/Generalized_Hebbian_algorithm

    The generalized Hebbian algorithm is an iterative algorithm to find the highest principal component vectors, in an algorithmic form that resembles unsupervised Hebbian learning in neural networks. Consider a one-layered neural network with n {\displaystyle n} input neurons and m {\displaystyle m} output neurons y 1 , … , y m {\displaystyle y ...

  5. Chromosome (genetic algorithm) - Wikipedia

    en.wikipedia.org/wiki/Chromosome_(genetic_algorithm)

    For example, 12.380 becomes the integer 12380 by multiplying by 1000. This must of course be taken into account in genotype-phenotype mapping for evaluation and result presentation. A common form is a chromosome consisting of a list or an array of integer or real values.

  6. AlphaZero - Wikipedia

    en.wikipedia.org/wiki/AlphaZero

    AlphaZero is a generic reinforcement learning algorithm – originally devised for the game of go – that achieved superior results within a few hours, searching a thousand times fewer positions, given no domain knowledge except the rules."

  7. Evolutionary algorithm - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_algorithm

    A Michigan-LCS evolves at the level of individual classifiers whereas a Pittsburgh-LCS uses populations of classifier-sets. Initially, classifiers were only binary, but now include real, neural net, or S-expression types. Fitness is typically determined with either a strength or accuracy based reinforcement learning or supervised learning approach.

  8. Feature learning - Wikipedia

    en.wikipedia.org/wiki/Feature_learning

    An example of unsupervised dictionary learning is sparse coding, which aims to learn basis functions (dictionary elements) for data representation from unlabeled input data. Sparse coding can be applied to learn overcomplete dictionaries, where the number of dictionary elements is larger than the dimension of the input data. [ 21 ]

  9. Restricted Boltzmann machine - Wikipedia

    en.wikipedia.org/wiki/Restricted_Boltzmann_machine

    Diagram of a restricted Boltzmann machine with three visible units and four hidden units (no bias units) A restricted Boltzmann machine (RBM) (also called a restricted Sherrington–Kirkpatrick model with external field or restricted stochastic Ising–Lenz–Little model) is a generative stochastic artificial neural network that can learn a probability distribution over its set of inputs.