Search results
Results from the WOW.Com Content Network
In computer science, linear search or sequential search is a method for finding an element within a list. It sequentially checks each element of the list until a match is found or the whole list has been searched. [1] A linear search runs in linear time in the worst case, and makes at most n comparisons, where n is the length of
The simplest, most general, and least efficient search structure is merely an unordered sequential list of all the items. Locating the desired item in such a list, by the linear search method, inevitably requires a number of operations proportional to the number n of items, in the worst case as well as in the average case. Useful search data ...
Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...
Binary search Visualization of the binary search algorithm where 7 is the target value Class Search algorithm Data structure Array Worst-case performance O (log n) Best-case performance O (1) Average performance O (log n) Worst-case space complexity O (1) Optimal Yes In computer science, binary search, also known as half-interval search, logarithmic search, or binary chop, is a search ...
A good example that highlights the pros and cons of using dynamic arrays vs. linked lists is by implementing a program that resolves the Josephus problem. The Josephus problem is an election method that works by having a group of people stand in a circle. Starting at a predetermined person, one may count around the circle n times.
In computer science, a lookup table (LUT) is an array that replaces runtime computation with a simpler array indexing operation, in a process termed as direct addressing.The savings in processing time can be significant, because retrieving a value from memory is often faster than carrying out an "expensive" computation or input/output operation. [1]
Interpolation search resembles the method by which people search a telephone directory for a name (the key value by which the book's entries are ordered): in each step the algorithm calculates where in the remaining search space the sought item might be, based on the key values at the bounds of the search space and the value of the sought key ...
On larger arrays, it only makes sense to use other, faster search methods if the data is large enough, because the initial time to prepare (sort) the data is comparable to many linear searches" Since 3 < 100, is an array with 3 elements of "medium size".