Search results
Results from the WOW.Com Content Network
The regulatory protein subunits of many ion channels and transmembrane receptors, for example, may be defined as peripheral membrane proteins. In contrast to integral membrane proteins, peripheral membrane proteins tend to collect in the water-soluble component, or fraction, of all the proteins extracted during a protein purification procedure.
Cross-presentation is of particular importance, because it permits the presentation of exogenous antigens, which are normally presented by MHC II on the surface of dendritic cells, to also be presented through the MHC I pathway. [6] The MHC I pathway is normally used to present endogenous antigens that have infected a particular cell.
Peripheral membrane proteins are temporarily attached either to the lipid bilayer or to integral proteins by a combination of hydrophobic, electrostatic, and other non-covalent interactions. Peripheral proteins dissociate following treatment with a polar reagent, such as a solution with an elevated pH or high salt concentrations. [citation needed]
The G-protein is a trimeric protein, with three subunits designated as α, β, and γ. In response to receptor activation, the α subunit releases bound guanosine diphosphate (GDP), which is displaced by guanosine triphosphate (GTP), thus activating the α subunit, which then dissociates from the β and γ subunits.
The most common form of MSPs are anchored to the merozoite surface with glycophosphatidylinositol, a short glycolipid often used for protein anchoring. Additional forms include integral membrane proteins and peripherally associated proteins, which are found to a lesser extent than glycophosphatidylinositol anchored proteins, or (GPI)-anchored proteins, on the merozoite surface. [4]
The major histocompatibility complex (MHC) is a large locus on vertebrate DNA containing a set of closely linked polymorphic genes that code for cell surface proteins essential for the adaptive immune system. These cell surface proteins are called MHC molecules. Its name comes from its discovery during the study of transplanted tissue ...
Cell adhesion molecules (CAMs) are a subset of cell surface proteins [1] that are involved in the binding of cells with other cells or with the extracellular matrix (ECM), in a process called cell adhesion. [2] In essence, CAMs help cells stick to each other and to their surroundings.
After the best-fit template is selected, the structural model of the sequence is built based on the alignment with the chosen template. Protein threading is based on two basic observations: that the number of different folds in nature is fairly small (approximately 1300); and that 90% of the new structures submitted to the PDB in the past three ...