Search results
Results from the WOW.Com Content Network
Many peripheral membrane proteins bind to the membrane primarily through interactions with integral membrane proteins. But there is a diverse group of proteins which interact directly with the surface of the lipid bilayer. Some, such as myelin basic protein, and spectrin have mainly structural roles.
The regulatory protein subunits of many ion channels and transmembrane receptors, for example, may be defined as peripheral membrane proteins. In contrast to integral membrane proteins, peripheral membrane proteins tend to collect in the water-soluble component, or fraction, of all the proteins extracted during a protein purification procedure.
Cross-sectional view of the structures that can be formed by phospholipids in an aqueous solution. A biological membrane, biomembrane or cell membrane is a selectively permeable membrane that separates the interior of a cell from the external environment or creates intracellular compartments by serving as a boundary between one part of the cell and another.
Lipid membrane with various proteins. Lipid-anchored proteins (also known as lipid-linked proteins) are proteins that are covalently attached to lipids embedded into biological membranes. The lipid-anchored protein can be located on either side of the cell membrane. Thus, the lipid serves to anchor the protein to the cell membrane.
Cell adhesion molecules (CAMs) are a subset of cell surface proteins [1] that are involved in the binding of cells with other cells or with the extracellular matrix (ECM), in a process called cell adhesion. [2] In essence, CAMs help cells stick to each other and to their surroundings.
Peripheral membrane proteins are temporarily attached either to the lipid bilayer or to integral proteins by a combination of hydrophobic, electrostatic, and other non-covalent interactions. Peripheral proteins dissociate following treatment with a polar reagent, such as a solution with an elevated pH or high salt concentrations. [citation needed]
The G-protein is a trimeric protein, with three subunits designated as α, β, and γ. In response to receptor activation, the α subunit releases bound guanosine diphosphate (GDP), which is displaced by guanosine triphosphate (GTP), thus activating the α subunit, which then dissociates from the β and γ subunits.
The most common form of MSPs are anchored to the merozoite surface with glycophosphatidylinositol, a short glycolipid often used for protein anchoring. Additional forms include integral membrane proteins and peripherally associated proteins, which are found to a lesser extent than glycophosphatidylinositol anchored proteins, or (GPI)-anchored proteins, on the merozoite surface. [4]