Search results
Results from the WOW.Com Content Network
The quantity is called the relative redundancy and gives the maximum possible data compression ratio, when expressed as the percentage by which a file size can be decreased. (When expressed as a ratio of original file size to compressed file size, the quantity R : r {\displaystyle R:r} gives the maximum compression ratio that can be achieved.)
[4] [5] The redundancy allows the receiver not only to detect errors that may occur anywhere in the message, but often to correct a limited number of errors. Therefore a reverse channel to request re-transmission may not be needed. The cost is a fixed, higher forward channel bandwidth.
Data compression aims to reduce the size of data files, enhancing storage efficiency and speeding up data transmission. K-means clustering, an unsupervised machine learning algorithm, is employed to partition a dataset into a specified number of clusters, k, each represented by the centroid of its points. This process condenses extensive ...
The field was established and put on a firm footing by Claude Shannon in the 1940s, [1] though early contributions were made in the 1920s through the works of Harry Nyquist and Ralph Hartley. It is at the intersection of electronic engineering, mathematics, statistics, computer science, neurobiology, physics, and electrical engineering. [2] [3]
Minimum redundancy feature selection is an algorithm frequently used in a method to accurately identify characteristics of genes and phenotypes and narrow down their relevance and is usually described in its pairing with relevant feature selection as Minimum Redundancy Maximum Relevance (mRMR).
Rate–distortion theory is a major branch of information theory which provides the theoretical foundations for lossy data compression; it addresses the problem of determining the minimal number of bits per symbol, as measured by the rate R, that should be communicated over a channel, so that the source (input signal) can be approximately reconstructed at the receiver (output signal) without ...
The Source coding theorem states that for any ε > 0, i.e. for any rate H(X) + ε larger than the entropy of the source, there is large enough n and an encoder that takes n i.i.d. repetition of the source, X 1:n, and maps it to n(H(X) + ε) binary bits such that the source symbols X 1:n are recoverable from the binary bits with probability of ...
Statistical learning theory is a framework for machine learning drawing from the fields of statistics and functional analysis. [1] [2] [3] Statistical learning theory deals with the statistical inference problem of finding a predictive function based on data. Statistical learning theory has led to successful applications in fields such as ...