Search results
Results from the WOW.Com Content Network
In anomaly detection, the local outlier factor (LOF) is an algorithm proposed by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander in 2000 for finding anomalous data points by measuring the local deviation of a given data point with respect to its neighbours.
ELKI is an open-source Java data mining toolkit that contains several anomaly detection algorithms, as well as index acceleration for them. PyOD is an open-source Python library developed specifically for anomaly detection. [56] scikit-learn is an open-source Python library that contains some algorithms for unsupervised anomaly detection.
The distance to the kth nearest neighbor can also be seen as a local density estimate and thus is also a popular outlier score in anomaly detection. The larger the distance to the k -NN, the lower the local density, the more likely the query point is an outlier. [ 24 ]
Neighbourhood components analysis is a supervised learning method for classifying multivariate data into distinct classes according to a given distance metric over the data. . Functionally, it serves the same purposes as the K-nearest neighbors algorithm and makes direct use of a related concept termed stochastic nearest neighbo
k-means clustering is a method of vector quantization, originally from signal processing, that aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.
Isolation Forest is an algorithm for data anomaly detection using binary trees.It was developed by Fei Tony Liu in 2008. [1] It has a linear time complexity and a low memory use, which works well for high-volume data.
A sample subset containing minimal number of data items is randomly selected from the input dataset. A fitting model with model parameters is computed using only the elements of this sample subset. The cardinality of the sample subset (e.g., the amount of data in this subset) is sufficient to determine the model parameters.
The term one-class classification (OCC) was coined by Moya & Hush (1996) [8] and many applications can be found in scientific literature, for example outlier detection, anomaly detection, novelty detection. A feature of OCC is that it uses only sample points from the assigned class, so that a representative sampling is not strictly required for ...