enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorial number system - Wikipedia

    en.wikipedia.org/wiki/Factorial_number_system

    The factorial number system is sometimes defined with the 0! place omitted because it is always zero (sequence A007623 in the OEIS). In this article, a factorial number representation will be flagged by a subscript "!". In addition, some examples will have digits delimited by a colon. For example, 3:4:1:0:1:0! stands for

  3. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    But if exact values for large factorials are desired, then special software is required, as in the pseudocode that follows, which implements the classic algorithm to calculate 1, 1×2, 1×2×3, 1×2×3×4, etc. the successive factorial numbers. constants: Limit = 1000 % Sufficient digits.

  4. Unary operation - Wikipedia

    en.wikipedia.org/wiki/Unary_operation

    This is in contrast to binary operations, which use two operands. [2] An example is any function ⁠: ⁠, where A is a set. The function ⁠ ⁠ is a unary operation on A. Common notations are prefix notation (e.g. ¬, −), postfix notation (e.g. factorial n!

  5. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    If the approximate ratio of two factors (/) is known, then a rational number / can be picked near that value. N u v = c v ⋅ d u {\displaystyle Nuv=cv\cdot du} , and Fermat's method, applied to Nuv , will find the factors c v {\displaystyle cv} and d u {\displaystyle du} quickly.

  6. Factorion - Wikipedia

    en.wikipedia.org/wiki/Factorion

    In number theory, a factorion in a given number base is a natural number that equals the sum of the factorials of its digits. [ 1 ] [ 2 ] [ 3 ] The name factorion was coined by the author Clifford A. Pickover .

  7. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    A simplified version of the LLL factorization algorithm is as follows: calculate a complex (or p-adic) root α of the polynomial () to high precision, then use the Lenstra–Lenstra–Lovász lattice basis reduction algorithm to find an approximate linear relation between 1, α, α 2, α 3, . . . with integer coefficients, which might be an ...

  8. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  9. Memoization - Wikipedia

    en.wikipedia.org/wiki/Memoization

    function factorial (n is a non-negative integer) if n is 0 then return 1 [by the convention that 0! = 1] else if n is in lookup-table then return lookup-table-value-for-n else let x = factorial(n – 1) times n [recursively invoke factorial with the parameter 1 less than n] store x in lookup-table in the n th slot [remember the result of n! for ...