Search results
Results from the WOW.Com Content Network
The xy-plane, a two-dimensional vector space, can be thought of as the direct sum of two one-dimensional vector spaces, namely the x and y axes. In this direct sum, the x and y axes intersect only at the origin (the zero vector).
In abstract algebra, the direct sum is a construction which combines several modules into a new, larger module. The direct sum of modules is the smallest module which contains the given modules as submodules with no "unnecessary" constraints, making it an example of a coproduct. Contrast with the direct product, which is the dual notion.
A given direct sum decomposition of into complementary subspaces still specifies a projection, and vice versa. If X {\displaystyle X} is the direct sum X = U ⊕ V {\displaystyle X=U\oplus V} , then the operator defined by P ( u + v ) = u {\displaystyle P(u+v)=u} is still a projection with range U {\displaystyle U} and kernel V {\displaystyle V} .
Thus the direct sum of A and der(A) can be made into a Lie algebra, called the structure algebra of A, str(A). A simple example is provided by the Hermitian Jordan algebras H(A,σ). In this case any element x of A with σ(x)=−x defines a derivation. In many important examples, the structure algebra of H(A,σ) is A.
The group operation in the external direct sum is pointwise multiplication, as in the usual direct product. This subset does indeed form a group, and for a finite set of groups {H i} the external direct sum is equal to the direct product. If G = ΣH i, then G is isomorphic to Σ E {H i}. Thus, in a sense, the direct sum is an "internal ...
The direct sum of infinitely many free abelian groups remains free abelian. It has a basis consisting of tuples in which all but one element is the identity, with the remaining element part of a basis for its group. [8] Every free abelian group may be described as a direct sum of copies of , with one copy for each member of its basis. [13] [14 ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The Kronecker sum is different from the direct sum, but is also denoted by ⊕. It is defined using the Kronecker product ⊗ and normal matrix addition. If A is n -by- n , B is m -by- m and I k {\displaystyle \mathbf {I} _{k}} denotes the k -by- k identity matrix then the Kronecker sum is defined by: