enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's quadrilateral theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_quadrilateral_theorem

    Euler's quadrilateral theorem or Euler's law on quadrilaterals, named after Leonhard Euler (1707–1783), describes a relation between the sides of a convex quadrilateral and its diagonals. It is a generalisation of the parallelogram law which in turn can be seen as generalisation of the Pythagorean theorem .

  3. Category:Theorems about quadrilaterals - Wikipedia

    en.wikipedia.org/wiki/Category:Theorems_about...

    Theorems about quadrilaterals and circles (6 P) Pages in category "Theorems about quadrilaterals" The following 11 pages are in this category, out of 11 total.

  4. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle). The theorem is named after the Greek astronomer and mathematician Ptolemy (Claudius Ptolemaeus). [ 1 ]

  5. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    A Watt quadrilateral is a quadrilateral with a pair of opposite sides of equal length. [6] A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8]

  6. Van Aubel's theorem - Wikipedia

    en.wikipedia.org/wiki/Van_Aubel's_theorem

    The theorem can be applied to a complex (self-intersecting) quadrilateral. In plane geometry, Van Aubel's theorem describes a relationship between squares constructed on the sides of a quadrilateral. Starting with a given convex quadrilateral, construct a square, external to the quadrilateral, on each side

  7. Rectangle - Wikipedia

    en.wikipedia.org/wiki/Rectangle

    The Japanese theorem for cyclic quadrilaterals [12] states that the incentres of the four triangles determined by the vertices of a cyclic quadrilateral taken three at a time form a rectangle. The British flag theorem states that with vertices denoted A , B , C , and D , for any point P on the same plane of a rectangle: [ 13 ]

  8. Ptolemy's inequality - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_inequality

    For four points in order around a circle, Ptolemy's inequality becomes an equality, known as Ptolemy's theorem: ¯ ¯ + ¯ ¯ = ¯ ¯. In the inversion-based proof of Ptolemy's inequality, transforming four co-circular points by an inversion centered at one of them causes the other three to become collinear, so the triangle equality for these three points (from which Ptolemy's inequality may ...

  9. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    This is a direct consequence of the inscribed angle theorem and the exterior angle theorem. There are no cyclic quadrilaterals with rational area and with unequal rational sides in either arithmetic or geometric progression. [26] If a cyclic quadrilateral has side lengths that form an arithmetic progression the quadrilateral is also ex-bicentric.