Search results
Results from the WOW.Com Content Network
separating the reaction mixture into organic and aqueous layers by liquid-liquid extraction. removal of solvents by evaporation. purification by chromatography, distillation or recrystallization. The work-up steps required for a given chemical reaction may require one or more of these manipulations.
2 C 6 Cl 2 (CN) 2 O 2 + C 10 H 12 → 2 C 6 Cl 2 (CN) 2 (OH) 2 + C 10 H 8. The resulting hydroquinone is poorly soluble in typical reaction solvents (dioxane, benzene, alkanes), which facilitates workup. Solutions of DDQ in benzene are red, due to the formation of a charge-transfer complex. [9]
The mechanism of the reaction involves two steps. The first step is a nucleophilic addition to the nitrile with the aid of a polarizing Lewis acid, forming an imine, which is later hydrolyzed during the aqueous workup to yield the final aryl ketone. Hoesch reaction mechanism
Acid–base extraction is a subclass of liquid–liquid extractions and involves the separation of chemical species from other acidic or basic compounds. [1] It is typically performed during the work-up step following a chemical synthesis to purify crude compounds [2] and results in the product being largely free of acidic or basic impurities.
The McMurry reaction of benzophenone. The McMurry reaction is an organic reaction in which two ketone or aldehyde groups are coupled to form an alkene using a titanium chloride compound such as titanium(III) chloride and a reducing agent.
The Corey–House synthesis (also called the Corey–Posner–Whitesides–House reaction and other permutations) is an organic reaction that involves the reaction of a lithium diorganylcuprate with an organic halide or pseudohalide (′) to form a new alkane, as well as an ill-defined organocopper species and lithium (pseudo)halide as byproducts.
Workup may refer to: Workup (chemistry) , manipulations carried out after the main chemical reaction to secure the desired product Workup, a game of practice baseball (see scrub baseball )
Such reactions usually involve an aqueous acidic workup, though this step is rarely shown in reaction schemes. In cases where the Grignard reagent is adding to an aldehyde or a prochiral ketone, the Felkin-Anh model or Cram's Rule can usually predict which stereoisomer will be formed.