Search results
Results from the WOW.Com Content Network
In digital photography, the image sensor format is the shape and size of the image sensor. The image sensor format of a digital camera determines the angle of view of a particular lens when used with a particular sensor. Because the image sensors in many digital cameras are smaller than the 24 mm × 36 mm image area of full-frame 35 mm cameras ...
Optical format is a hypothetical measurement approximately 50% larger than the true diagonal size of a solid-state photo sensor.The use of the optical format means that a lens used with a particular size sensor will have approximately the same angle of view as if it were to be used with an equivalent-sized video camera tube (an "old-fashioned" TV camera).
The waves can be light or other electromagnetic radiation. Image sensors are used in electronic imaging devices of both analog and digital types, which include digital cameras, camera modules, camera phones, optical mouse devices,[1][2][3] medical imaging equipment, night vision equipment such as thermal imaging devices, radar, sonar, and others.
The optical transfer function of a well-focused (a), and an out-of-focus optical imaging system without aberrations (d). As the optical transfer function of these systems is real and non-negative, the optical transfer function is by definition equal to the modulation transfer function (MTF).
Optical systems, and in particular optical aberrations are not always rotationally symmetric. Periodic patterns that have a different orientation can thus be imaged with different contrast even if their periodicity is the same. Optical transfer function or modulation transfer functions are thus generally two-dimensional functions.
In optics, an image-forming optical system is a system capable of being used for imaging. The diameter of the aperture of the main objective is a common criterion for comparison among optical systems, such as large telescopes. The two traditional optical systems are mirror-systems and lens-systems .
Commercially available laboratory-based chemical imaging systems emerged in the early 1990s (ref. 1-5). In addition to economic factors, such as the need for sophisticated electronics and extremely high-end computers, a significant barrier to commercialization of infrared imaging was that the focal plane array (FPA) needed to read IR images were not readily available as commercial items.
There are three common naming conventions for specifying one of the two enantiomers (the absolute configuration) of a given chiral molecule: the R/S system is based on the geometry of the molecule; the (+)- and (−)- system (also written using the obsolete equivalents d- and l-) is based on its optical rotation properties; and the D/L system is based on the molecule's relationship to ...