Search results
Results from the WOW.Com Content Network
If the conditional distribution of given is a continuous distribution, then its probability density function is known as the conditional density function. [1] The properties of a conditional distribution, such as the moments , are often referred to by corresponding names such as the conditional mean and conditional variance .
If the random variable can take on only a finite number of values, the "conditions" are that the variable can only take on a subset of those values. More formally, in the case when the random variable is defined over a discrete probability space, the "conditions" are a partition of this probability space.
For working with , it is important that it be regular, that is: . For almost all x, (,) is a probability measure; For all A, (,) is a measurable function; In other words is a Markov kernel.
According to the change-of-variables formula for Lebesgue integration, [21] combined with the law of the unconscious statistician, [22] it follows that [] = for any absolutely continuous random variable X. The above discussion of continuous random variables is thus a special case of the general Lebesgue theory, due to the fact that every ...
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
A mixed random variable is a random variable whose cumulative distribution function is neither discrete nor everywhere-continuous. [10] It can be realized as a mixture of a discrete random variable and a continuous random variable; in which case the CDF will be the weighted average of the CDFs of the component variables.
This random variable X has a Bernoulli distribution with parameter . [29] This is a transformation of discrete random variable. For a distribution function of an absolutely continuous random variable, an absolutely continuous random variable must be constructed.
The moment generating function of a real random variable is the expected value of , as a function of the real parameter . For a normal distribution with density f {\textstyle f} , mean μ {\textstyle \mu } and variance σ 2 {\textstyle \sigma ^{2}} , the moment generating function exists and is equal to