Search results
Results from the WOW.Com Content Network
In mathematics, the capacity of a set in Euclidean space is a measure of the "size" of that set. Unlike, say, Lebesgue measure , which measures a set's volume or physical extent, capacity is a mathematical analogue of a set's ability to hold electrical charge .
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
A mathematical object is an abstract concept arising in mathematics. [1] Typically, a mathematical object can be a value that can be assigned to a symbol, and therefore can be involved in formulas. Commonly encountered mathematical objects include numbers, expressions, shapes, functions, and sets.
Capacity of a container, closely related to the volume of the container Capacity of a set , in Euclidean space, the total charge a set can hold while maintaining a given potential energy Capacity factor , the ratio of the actual output of a power plant to its theoretical potential output
6 volumetric measures from the mens ponderia in Pompeii, a municipal institution for the control of weights and measures (79 A. D.). A unit of volume is a unit of measurement for measuring volume or capacity, the extent of an object or space in three dimensions.
The power object of a set A is given by its power set, and the exponential object of the sets A and B is given by the set of all functions from A to B. Set is thus a topos (and in particular cartesian closed and exact in the sense of Barr). Set is not abelian, additive nor preadditive. Every non-empty set is an injective object in Set.
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. [a] Equivalently, a set is countable if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time ...
A class that is not a set (informally in Zermelo–Fraenkel) is called a proper class, and a class that is a set is sometimes called a small class. For instance, the class of all ordinal numbers, and the class of all sets, are proper classes in many formal systems.