enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Antisymmetric relation - Wikipedia

    en.wikipedia.org/wiki/Antisymmetric_relation

    A relation can be both symmetric and antisymmetric (in this case, it must be coreflexive), and there are relations which are neither symmetric nor antisymmetric (for example, the "preys on" relation on biological species). Antisymmetry is different from asymmetry: a relation is asymmetric if and only if it is antisymmetric and irreflexive.

  3. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    For example, ≥ is an antisymmetric relation; so is >, but vacuously (the condition in the definition is always false). [11] Asymmetric for all x, y ∈ X, if xRy then not yRx. A relation is asymmetric if and only if it is both antisymmetric and irreflexive. [12] For example, > is an asymmetric relation, but ≥ is not.

  4. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...

  5. Skew-symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-symmetric_matrix

    In mathematics, particularly in linear algebra, a skew-symmetric (or antisymmetric or antimetric [1]) matrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition [ 2 ] : p. 38

  6. Antisymmetric - Wikipedia

    en.wikipedia.org/wiki/Antisymmetric

    Antisymmetric relation in mathematics; Skew-symmetric graph; Self-complementary graph; In mathematics, especially linear algebra, and in theoretical physics, the adjective antisymmetric (or skew-symmetric) is used for matrices, tensors, and other objects that change sign if an appropriate operation (e.g. matrix transposition) is performed. See:

  7. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    In two dimensions, the Levi-Civita symbol is defined by: = {+ (,) = (,) (,) = (,) = The values can be arranged into a 2 × 2 antisymmetric matrix: = (). Use of the two-dimensional symbol is common in condensed matter, and in certain specialized high-energy topics like supersymmetry [1] and twistor theory, [2] where it appears in the context of 2-spinors.

  8. Asymmetric relation - Wikipedia

    en.wikipedia.org/wiki/Asymmetric_relation

    For example, that every equivalence relation is symmetric, but not necessarily antisymmetric, is indicated by in the "Symmetric" column and in the "Antisymmetric" column, respectively. All definitions tacitly require the homogeneous relation R {\displaystyle R} be transitive : for all a , b , c , {\displaystyle a,b,c,} if a R b {\displaystyle ...

  9. Preorder - Wikipedia

    en.wikipedia.org/wiki/Preorder

    The relation on equivalence classes is a partial order. In mathematics, especially in order theory, a preorder or quasiorder is a binary relation that is reflexive and transitive. The name preorder is meant to suggest that preorders are almost partial orders, but not quite, as they are not necessarily antisymmetric.