Search results
Results from the WOW.Com Content Network
The displacer is a special-purpose piston, used in Beta and Gamma type Stirling engines, to move the working gas back and forth between the hot and cold heat exchangers. Depending on the type of engine design, the displacer may or may not be sealed to the cylinder; i.e., it may be a loose fit within the cylinder, allowing the working gas to ...
A Stirling engine eliminates the need for water anywhere in the cycle. This would have advantages for nuclear installations in dry regions. United States government labs have developed a modern Stirling engine design known as the Stirling radioisotope generator for use in space exploration. It is designed to generate electricity for deep space ...
Compared to the idealized cycle, this cycle is a more realistic representation of most real Stirling engines. The four points in the graph indicate the crank angle in degrees. [7] The adiabatic Stirling cycle is similar to the idealized Stirling cycle; however, the four thermodynamic processes are slightly different (see graph above):
An external combustion engine (EC engine) is a reciprocating heat engine where a working fluid, contained internally, is heated by combustion in an external source, through the engine wall or a heat exchanger. The fluid then, by expanding and acting on the mechanism of the engine, produces motion and usable work. [1]
A Fluidyne engine is an alpha or gamma type Stirling engine with one or more liquid pistons. It contains a working gas (often air), and either two liquid pistons or one liquid piston and a displacer. [1] The engine was invented in 1969. [2] The engine was patented in 1973 by the United Kingdom Atomic Energy Authority. [3] [2]
Engines of similar (or even identical) configuration and operation may use a supply of heat from other sources such as nuclear, solar, geothermal or exothermic reactions not involving combustion; but are not then strictly classed as external combustion engines, but as external thermal engines. The working fluid can be a gas as in a Stirling ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
It was originally developed around 1900 for the twin-cylinder Lanchester car engine where it allowed perfect balancing of the inertial forces on both pistons. A current example of its use is on beta type-Stirling engines; the drive's complexity and tight tolerances, causing a high cost of manufacture, is a hurdle for the widespread usage of this drive.