enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DEAP (software) - Wikipedia

    en.wikipedia.org/wiki/DEAP_(software)

    Distributed Evolutionary Algorithms in Python (DEAP) is an evolutionary computation framework for rapid prototyping and testing of ideas. [2] [3] [4] It incorporates the data structures and tools required to implement most common evolutionary computation techniques such as genetic algorithm, genetic programming, evolution strategies, particle swarm optimization, differential evolution, traffic ...

  3. Evolutionary programming - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_programming

    Evolutionary programming is one of the four major evolutionary algorithm paradigms. It is similar to genetic programming , but the structure of the program to be optimized is fixed, while its numerical parameters are allowed to evolve.

  4. Genetic programming - Wikipedia

    en.wikipedia.org/wiki/Genetic_programming

    Meta-genetic programming is the proposed meta-learning technique of evolving a genetic programming system using genetic programming itself. It suggests that chromosomes, crossover, and mutation were themselves evolved, therefore like their real life counterparts should be allowed to change on their own rather than being determined by a human ...

  5. Gene expression programming - Wikipedia

    en.wikipedia.org/wiki/Gene_expression_programming

    In computer programming, gene expression programming (GEP) is an evolutionary algorithm that creates computer programs or models. These computer programs are complex tree structures that learn and adapt by changing their sizes, shapes, and composition, much like a living organism.

  6. Evolutionary algorithm - Wikipedia

    en.wikipedia.org/wiki/Evolutionary_algorithm

    In computational intelligence (CI), an evolutionary algorithm (EA) is a subset of evolutionary computation, [1] a generic population-based metaheuristic optimization algorithm. An EA uses mechanisms inspired by biological evolution , such as reproduction , mutation , recombination , and selection .

  7. Neuroevolution - Wikipedia

    en.wikipedia.org/wiki/Neuroevolution

    Many neuroevolution algorithms have been defined. One common distinction is between algorithms that evolve only the strength of the connection weights for a fixed network topology (sometimes called conventional neuroevolution), and algorithms that evolve both the topology of the network and its weights (called TWEANNs, for Topology and Weight Evolving Artificial Neural Network algorithms).

  8. Genetic algorithm - Wikipedia

    en.wikipedia.org/wiki/Genetic_algorithm

    Alternative and complementary algorithms include evolution strategies, evolutionary programming, simulated annealing, Gaussian adaptation, hill climbing, and swarm intelligence (e.g.: ant colony optimization, particle swarm optimization) and methods based on integer linear programming. The suitability of genetic algorithms is dependent on the ...

  9. Grammatical evolution - Wikipedia

    en.wikipedia.org/wiki/Grammatical_evolution

    Grammatical evolution (GE) is an evolutionary computation and, more specifically, a genetic programming (GP) technique (or approach) pioneered by Conor Ryan, JJ Collins and Michael O'Neill in 1998 [1] at the BDS Group in the University of Limerick.