Search results
Results from the WOW.Com Content Network
Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance ( 1 / distance 3 ) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]
The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI). One tesla is equal to one weber per square metre .
The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted.
One difference between the Gaussian and SI systems is in the factor 4π in various formulas that relate the quantities that they define. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the Biot–Savart law – do have a factor of 4π attached to the r 2.
In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units.For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc 2.
Its SI unit is the radian per second per tesla (rad⋅s −1 ⋅T −1) or, equivalently, the coulomb per kilogram (C⋅kg −1). [citation needed] The term "gyromagnetic ratio" is often used [2] as a synonym for a different but closely related quantity, the g-factor. The g-factor only differs from the gyromagnetic ratio in being dimensionless.
The plasma collisionality is defined as [4] [5] =, where denotes the electron-ion collision frequency, is the major radius of the plasma, is the inverse aspect-ratio, and is the safety factor. The plasma parameters m i {\displaystyle m_{\mathrm {i} }} and T i {\displaystyle T_{\mathrm {i} }} denote, respectively, the mass and temperature of the ...
In classical electromagnetism, magnetic vector potential (often called A) is the vector quantity defined so that its curl is equal to the magnetic field: =.Together with the electric potential φ, the magnetic vector potential can be used to specify the electric field E as well.