Search results
Results from the WOW.Com Content Network
A strict total order on a set is a strict partial order on in which any two distinct elements are comparable. That is, a strict total order is a binary relation < {\displaystyle <} on some set X {\displaystyle X} , which satisfies the following for all a , b {\displaystyle a,b} and c {\displaystyle c} in X {\displaystyle X} :
A strict weak order that is trichotomous is called a strict total order. [14] The total preorder which is the inverse of its complement is in this case a total order . For a strict weak order < {\displaystyle \,<\,} another associated reflexive relation is its reflexive closure , a (non-strict) partial order ≤ . {\displaystyle \,\leq .}
If ≤ is a non-strict well ordering, then < is a strict well ordering. A relation is a strict well ordering if and only if it is a well-founded strict total order. The distinction between strict and non-strict well orders is often ignored since they are easily interconvertible.
A partial order with this property is called a total order. These orders can also be called linear orders or chains. While many familiar orders are linear, the subset order on sets provides an example where this is not the case. Another example is given by the divisibility (or "is-a-factor-of") relation |.
A strict partial order, also called strict order, [citation needed] is a relation that is irreflexive, antisymmetric, and transitive. A total order, also called linear order, simple order, or chain, is a relation that is reflexive, antisymmetric, transitive and connected. [15]
A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are equivalent to the axiom of choice (often called AC, see also Axiom of choice § Equivalents).
Similarly, a strict partial order that is connected is a strict total order. A relation is a total order if and only if it is both a partial order and strongly connected. A relation is a strict total order if, and only if, it is a strict partial order and just connected. A strict total order can never be strongly connected (except on an empty ...
Total, Semiconnex: Anti-reflexive: Equivalence relation Preorder (Quasiorder) Partial order Total preorder Total order Prewellordering Well-quasi-ordering Well-ordering Lattice Join-semilattice Meet-semilattice Strict partial order Strict weak order Strict total order Symmetric: Antisymmetric: Connected: Well-founded