enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  3. Small-angle approximation - Wikipedia

    en.wikipedia.org/wiki/Small-angle_approximation

    The quantity 206 265 ″ is approximately equal to the number of arcseconds in a circle (1 296 000 ″), divided by 2π, or, the number of arcseconds in 1 radian. The exact formula is = ⁡ (″) and the above approximation follows when tan X is replaced by X.

  4. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    If is expressed in radians: ⁡ = ⁡ ⁡ = ⁡ These limits both follow from the continuity of sin and cos. ⁡ =. [7] [8] Or, in general, ⁡ =, for a not equal to 0. ⁡ = ⁡ =, for b not equal to 0.

  5. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    This geometric argument relies on definitions of arc length and area, which act as assumptions, so it is rather a condition imposed in construction of trigonometric functions than a provable property. [2] For the sine function, we can handle other values. If θ > π /2, then θ > 1. But sin θ ≤ 1 (because of the Pythagorean identity), so sin ...

  6. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    r = | z | = √ x 2 + y 2 is the magnitude of z and; φ = arg z = atan2(y, x). φ is the argument of z, i.e., the angle between the x axis and the vector z measured counterclockwise in radians, which is defined up to addition of 2π. Many texts write φ = tan −1 ⁠ y / x ⁠ instead of φ = atan2(y, x), but the first equation needs ...

  7. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    Since we are considering the limit as θ tends to zero, we may assume θ is a small positive number, say 0 < θ < ⁠ 1 / 2 ⁠ π in the first quadrant. In the diagram, let R 1 be the triangle OAB, R 2 the circular sector OAB, and R 3 the triangle OAC. The area of triangle OAB is:

  8. Sine and cosine - Wikipedia

    en.wikipedia.org/wiki/Sine_and_cosine

    Angle, x sin(x) cos(x) Degrees Radians Gradians Turns Exact Decimal Exact Decimal 0° 0 0 g: 0 0 0 1 1 30° ⁠ 1 / 6 ⁠ π ⁠33 + 1 / 3 ⁠ g ⁠ 1 / 12 ⁠ ⁠ 1 / 2 ⁠ 0.5 0.8660 45° ⁠ 1 / 4 ⁠ π: 50 g ⁠ 1 / 8 ⁠ 0.7071 0.7071 60° ⁠ 1 / 3 ⁠ π ⁠66 + 2 / 3 ⁠ g

  9. Limit of a function - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_function

    A function is continuous at a limit point p of and in its domain if and only if f(p) is the (or, in the general case, a) limit of f(x) as x tends to p. There is another type of limit of a function, namely the sequential limit. Let f : X → Y be a mapping from a topological space X into a Hausdorff space Y, p ∈ X a limit point of X and L ∈ Y.