Search results
Results from the WOW.Com Content Network
Total iron-binding capacity (TIBC) or sometimes transferrin iron-binding capacity is a medical laboratory test that measures the blood's capacity to bind iron with transferrin. [1] Transferrin can bind two atoms of ferric iron (Fe 3+ ) with high affinity.
It is the value of serum iron divided by the total iron-binding capacity [1] of the available transferrin, the main protein that binds iron in the blood, this value tells a clinician how much serum iron is bound. For instance, a value of 15% means that 15% of iron-binding sites of transferrin are being occupied by iron.
The N- and C- terminal sequences are represented by globular lobes and between the two lobes is an iron-binding site. [12] The amino acids which bind the iron ion to the transferrin are identical for both lobes; two tyrosines, one histidine, and one aspartic acid. For the iron ion to bind, an anion is required, preferably carbonate (CO 2− 3 ...
Iron tests are groups of clinical chemistry laboratory blood tests that are used to evaluate body iron stores or the iron level in blood serum. Other terms used for the same tests are iron panel , iron profile , iron indices , iron status or iron studies .
Normal serum iron is between 60 and 170 micrograms per deciliter (μg/dL). [7] Normal total iron-binding capacity for both sexes is 240 to 450 μg/dL. [6] Total iron-binding capacity increases when iron deficiency exists. [4] Serum ferritin levels reflect the iron stores available in the body. [4]
Serum Iron: high; increased ferritin levels; decreased total iron-binding capacity; high transferrin saturation; Hematocrit of about 20-30%; The mean corpuscular volume or MCV is usually normal or low for congenital causes of sideroblastic anemia but normal or high for acquired forms.
Iron overload (also known as haemochromatosis or hemochromatosis) is the abnormal and increased accumulation of total iron in the body, leading to organ damage. [1] The primary mechanism of organ damage is oxidative stress, as elevated intracellular iron levels increase free radical formation via the Fenton reaction.
Serum iron is a medical laboratory test that measures the amount of circulating iron that is bound to transferrin and freely circulate in the blood. Clinicians order this laboratory test when they are concerned about iron deficiency, which can cause anemia and other problems. 65% of the iron in the body is bound up in hemoglobin molecules in red blood cells.