Search results
Results from the WOW.Com Content Network
MSP kWh is the amount of electricity consumed at the 'meter supply point', which is the customer's meter. GSP kWh is obtained by multiplying the MSP kWh by the Line Loss Factor (LLF, a figure > 1) to include the amount of electricity lost when it is conducted through the distribution network, from the 'grid supply point' to the customer's meter.
To do so, they employ a meter administrator [18] [19] who will use daily data from a photo-electric control unit (PECU) array which is then used to calculate the energy consumption. A PECU array is a device that holds a representative number of the photocells that authority uses on their street lights or traffic signals. [ 20 ]
The notation kW/h for the kilowatt-hour is incorrect, as it denotes kilowatt per hour. The hour is a unit of time listed among the non-SI units accepted by the International Bureau of Weights and Measures for use with the SI. [6] An electric heater consuming 1,000 watts (1 kilowatt) operating for one hour uses one kilowatt-hour of energy.
The findings are presented in units of global warming potential per unit of electrical energy generated by that source. The scale uses the global warming potential unit, the carbon dioxide equivalent (CO 2 e), and the unit of electrical energy, the kilowatt hour (kWh). The goal of such assessments is to cover the full life of the source, from ...
Example: For a heat pump delivering 120,000,000 BTU during the season, when consuming 15,000 kWh, the HSPF can be calculated as : HSPF = 120000000 (BTU) / (1000) / 15000 (kWh) HSPF = 8. The HSPF is related to the non-dimensional Coefficient of Performance (COP) for a heat pump, which measures the ratio of heat delivered to work done by the ...
In the United States, a residential electric customer is charged based on the amount of electric energy used. On the customer bill, the electric utility states the amount of electric energy, in kilowatt-hours (kW·h), that the customer used since the last bill, and the cost of the energy per kilowatt-hour (kW·h).
A heat rate value of 2 kWh/kWh gives an efficiency factor of 50%. A heat rate value of 4 MJ/MJ gives an efficiency factor of 25%. For other units, make sure to use a corresponding conversion factor for the units. For example, if using Btu/kWh, use a conversion factor of 3,412 Btu per kWh to calculate the efficiency factor.
IDC—Interchange Distribution Calculator (electricity) IEA—International Energy Agency (Paris) IEC—International Electrotechnical Commission; IEM—Internal electricity market (electricity) IEEE—Institute of Electrical and Electronics Engineers; IEPE—Institute of Energy Policy and Economics (France) IER—Incremental Energy Rate