Search results
Results from the WOW.Com Content Network
Hydrostatics, also known as fluid statics, is the study of fluids at rest (i.e. in static equilibrium). The characteristic of any fluid at rest is that the force exerted on any particle of the fluid is the same at all points at the same depth (or altitude) within the fluid.
In other words, a characteristic class associates to each principal G-bundle in () an element c(P) in H*(X) such that, if f : Y → X is a continuous map, then c(f*P) = f*c(P). On the left is the class of the pullback of P to Y; on the right is the image of the class of P under the induced map in cohomology.
A representation of the relation among complexity classes. This is a list of complexity classes in computational complexity theory. For other computational and complexity subjects, see list of computability and complexity topics. Many of these classes have a 'co' partner which consists of the complements of all languages in the original class ...
Descriptively, a statically determinate structure can be defined as a structure where, if it is possible to find internal actions in equilibrium with external loads, those internal actions are unique. The structure has no possible states of self-stress, i.e. internal forces in equilibrium with zero external loads are not possible.
Classical mechanics was traditionally divided into three main branches. Statics is the branch of classical mechanics that is concerned with the analysis of force and torque acting on a physical system that does not experience an acceleration, but rather is in equilibrium with its environment. [3]
This means that they are at least as hard as any problem in the class . If a problem is C {\displaystyle C} -hard (with respect to polynomial time reductions), then it cannot be solved by a polynomial-time algorithm unless the computational hardness assumption P ≠ C {\displaystyle P\neq C} is false.
By the fundamental theorem of algebra, polynomials in C are rigid in the sense that any polynomial is completely determined by its values on any infinite set, say N, or the unit disk. By the previous example, a polynomial is also determined within the set of holomorphic functions by the finite set of its non-zero derivatives at any single point.
More precisely, a straight line is said to be a tangent of a curve y = f(x) at a point x = c on the curve if the line passes through the point (c, f(c)) on the curve and has slope f ' (c) where f ' is the derivative of f. A similar definition applies to space curves and curves in n-dimensional Euclidean space.