Search results
Results from the WOW.Com Content Network
Antimicrobial pharmacodynamics is the relationship between the concentration of an antibiotic and its ability to inhibit vital processes of endo- or ectoparasites and microbial organisms. [1] This branch of pharmacodynamics relates the concentration of an anti-infective agent to its effect, specifically to its antimicrobial effect.
Toxicodynamics (TD) and pharmacodynamics (PD) link a therapeutic agent or toxicant, or toxin (xenobiotic)'s dosage to the features, amount, and time course of its biological action. [11] The mechanism of action is a crucial factor in determining effect and toxicity of the drug, taking in consideration the pharmacokinetic (PK) factors. [12]
An antibiotic is a type of antimicrobial substance active against bacteria. It is the most important type of antibacterial agent for fighting bacterial infections, and antibiotic medications are widely used in the treatment and prevention of such infections. [1] [2] They may either kill or inhibit the growth of bacteria.
Pharmacodynamics studies the effects of a drug on biological systems, and pharmacokinetics studies the effects of biological systems on a drug. In broad terms, pharmacodynamics discusses the chemicals with biological receptors , and pharmacokinetics discusses the absorption , distribution, metabolism , and excretion (ADME) of chemicals from the ...
Two separate patients who were prescribed a popular class of antibiotic told WFTS the drug came with ... there have been 45,000 reported cases of side effects related to fluoroquinolones. 23.1 ...
Antibiotics by class Generic name Brand names Common uses [4] Possible side effects [4] Mechanism of action Aminoglycosides; Amikacin: Amikin: Infections caused by Gram-negative bacteria, such as Escherichia coli and Klebsiella particularly Pseudomonas aeruginosa. Effective against aerobic bacteria (not obligate/facultative anaerobes) and ...
Antimicrobial use has been common practice for at least 2000 years. Ancient Egyptians and ancient Greeks used specific molds and plant extracts to treat infection. [5]In the 19th century, microbiologists such as Louis Pasteur and Jules Francois Joubert observed antagonism between some bacteria and discussed the merits of controlling these interactions in medicine. [6]
The ED 95 is the dose required to achieve the desired effect in 95% of the population. In anaesthesia, the term ED 95 is also used when referring to the pharmacology of neuromuscular blocking drugs. In this context, it is the dose which will cause 95% depression of the height of a single muscle twitch, in half of the population.