Search results
Results from the WOW.Com Content Network
2-Bromobutane is an isomer of 1-bromobutane. Both compounds share the molecular formula C 4 H 9 Br. 2-Bromobutane is also known as sec-butyl bromide or methylethylbromomethane. Because it contains bromine, a halogen, it is part of a larger class of compounds known as alkyl halides. It is a colorless liquid with a pleasant odor.
Bromobutane (molecular formula: C 4 H 9 Br, molar mass: 137.02 g/mol) may refer to either of two chemical compounds: 1-Bromobutane (n-butyl bromide)
1-Bromobutane is the organobromine compound with the formula CH 3 (CH 2) 3 Br. It is a colorless liquid, although impure samples appear yellowish. It is insoluble in water, but soluble in organic solvents. It is primarily used as a source of the butyl group in organic synthesis. It is one of several isomers of butyl bromide.
Isomers themselves exist in many varieties but can generally be classified as structural isomers or stereoisomers. Structural isomers have a different ordering of bonds and/or different bond connectivity from one another, as in the case of hexane and its four other isomeric forms ( 2-methylpentane , 3-methylpentane , 2,2-dimethylbutane , and 2 ...
Butanol (also called butyl alcohol) is a four-carbon alcohol with a formula of C 4 H 9 O H, which occurs in five isomeric structures (four structural isomers), from a straight-chain primary alcohol to a branched-chain tertiary alcohol; [1] all are a butyl or isobutyl group linked to a hydroxyl group (sometimes represented as BuOH, sec-BuOH, i-BuOH, and t-BuOH).
Functional isomers are structural isomers which have different functional groups, resulting in significantly different chemical and physical properties. [ 11 ] An example is the pair propanal H 3 C–CH 2 –C(=O)-H and acetone H 3 C–C(=O)–CH 3 : the first has a –C(=O)H functional group, which makes it an aldehyde , whereas the second has ...
The rotation has the same magnitude but opposite senses for the two isomers, and can be a useful way of distinguishing and measuring their concentration in a solution. For this reason, enantiomers were formerly called "optical isomers". [8] [9] However, this term is ambiguous and is discouraged by the IUPAC. [10] [11]
This effect is abolished in polar solvents such as water. 1,3-diaxial interactions, which usually destabilize the anomer that has the anomeric group in an axial orientation on the ring. This effect is especially noticeable in pyranoses and other six-membered ring compounds. This is a major factor in water.