Search results
Results from the WOW.Com Content Network
In functional programming languages, variadics can be considered complementary to the apply function, which takes a function and a list/sequence/array as arguments, and calls the function with the arguments supplied in that list, thus passing a variable number of arguments to the function.
Function annotations (type hints) are defined in PEP 3107. [32] They allow attaching data to the arguments and return of a function. The behaviour of annotations is not defined by the language, and is left to third party frameworks. For example, a library could be written to handle static typing: [32]
Existing Eiffel software uses the string classes (such as STRING_8) from the Eiffel libraries, but Eiffel software written for .NET must use the .NET string class (System.String) in many cases, for example when calling .NET methods which expect items of the .NET type to be passed as arguments. So, the conversion of these types back and forth ...
Methods on objects are functions attached to the object's class; the syntax instance. method (argument) is, for normal methods and functions, syntactic sugar for Class. method (instance, argument). Python methods have an explicit self parameter to access instance data, in contrast to the implicit self (or this) in some other object-oriented ...
A simple example of a higher-ordered function is the map function, which takes, as its arguments, a function and a list, and returns the list formed by applying the function to each member of the list. For a language to support map, it must support passing a function as an argument.
A higher-order function is a function that takes a function as an argument or returns one as a result. This is commonly used to customize the behavior of a generically defined function, often a looping construct or recursion scheme. Anonymous functions are a convenient way to specify such function arguments. The following examples are in Python 3.
A program can convert a pointer to any type of data (except a function pointer) to a pointer to void and back to the original type without losing information, which makes these pointers useful for polymorphic functions. The C language standard does not guarantee that the different pointer types have the same size or alignment.
The left figure below shows a binary decision tree (the reduction rules are not applied), and a truth table, each representing the function (,,).In the tree on the left, the value of the function can be determined for a given variable assignment by following a path down the graph to a terminal.